On the group of zero-cycles of holomorphic symplectic varieties
Épijournal de Géométrie Algébrique, Tome 4 (2020)
Voir la notice de l'article provenant de la source Episciences
For a moduli space of Bridgeland-stable objects on a K3 surface, we show that the Chow class of a point is determined by the Chern class of the corresponding object on the surface. This establishes a conjecture of Junliang Shen, Qizheng Yin, and the second author.
@article{10_46298_epiga_2020_volume4_5506,
author = {Marian, Alina and Zhao, Xiaolei},
title = {On the group of zero-cycles of holomorphic symplectic varieties},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {4},
year = {2020},
doi = {10.46298/epiga.2020.volume4.5506},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5506/}
}
TY - JOUR AU - Marian, Alina AU - Zhao, Xiaolei TI - On the group of zero-cycles of holomorphic symplectic varieties JO - Épijournal de Géométrie Algébrique PY - 2020 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5506/ DO - 10.46298/epiga.2020.volume4.5506 LA - en ID - 10_46298_epiga_2020_volume4_5506 ER -
%0 Journal Article %A Marian, Alina %A Zhao, Xiaolei %T On the group of zero-cycles of holomorphic symplectic varieties %J Épijournal de Géométrie Algébrique %D 2020 %V 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5506/ %R 10.46298/epiga.2020.volume4.5506 %G en %F 10_46298_epiga_2020_volume4_5506
Marian, Alina; Zhao, Xiaolei. On the group of zero-cycles of holomorphic symplectic varieties. Épijournal de Géométrie Algébrique, Tome 4 (2020). doi: 10.46298/epiga.2020.volume4.5506
Cité par Sources :