Hyperelliptic classes are rigid and extremal in genus two
Épijournal de Géométrie Algébrique, Tome 4 (2020)

Voir la notice de l'article provenant de la source Episciences

We show that the class of the locus of hyperelliptic curves with $\ell$ marked Weierstrass points, $m$ marked conjugate pairs of points, and $n$ free marked points is rigid and extremal in the cone of effective codimension-($\ell + m$) classes on $\overline{\mathcal{M}}_{2,\ell+2m+n}$. This generalizes work of Chen and Tarasca and establishes an infinite family of rigid and extremal classes in arbitrarily-high codimension.
@article{10_46298_epiga_2020_volume4_4902,
     author = {Blankers, Vance},
     title = {Hyperelliptic classes are rigid and extremal in genus two},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {4},
     year = {2020},
     doi = {10.46298/epiga.2020.volume4.4902},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.4902/}
}
TY  - JOUR
AU  - Blankers, Vance
TI  - Hyperelliptic classes are rigid and extremal in genus two
JO  - Épijournal de Géométrie Algébrique
PY  - 2020
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.4902/
DO  - 10.46298/epiga.2020.volume4.4902
LA  - en
ID  - 10_46298_epiga_2020_volume4_4902
ER  - 
%0 Journal Article
%A Blankers, Vance
%T Hyperelliptic classes are rigid and extremal in genus two
%J Épijournal de Géométrie Algébrique
%D 2020
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.4902/
%R 10.46298/epiga.2020.volume4.4902
%G en
%F 10_46298_epiga_2020_volume4_4902
Blankers, Vance. Hyperelliptic classes are rigid and extremal in genus two. Épijournal de Géométrie Algébrique, Tome 4 (2020). doi: 10.46298/epiga.2020.volume4.4902

Cité par Sources :