Variation of stable birational types in positive characteristic
Épijournal de Géométrie Algébrique, Tome 3 (2019)
Voir la notice de l'article provenant de la source Episciences
Let k be an uncountable algebraically closed field and let Y be a smooth projective k-variety which does not admit a decomposition of the diagonal. We prove that Y is not stably birational to a very general hypersurface of any given degree and dimension. We use this to study the variation of the stable birational types of Fano hypersurfaces over fields of arbitrary characteristic. This had been initiated by Shinder, whose method works in characteristic zero.
@article{10_46298_epiga_2020_volume3_5728,
author = {Schreieder, Stefan},
title = {Variation of stable birational types in positive characteristic},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {3},
year = {2019},
doi = {10.46298/epiga.2020.volume3.5728},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume3.5728/}
}
TY - JOUR AU - Schreieder, Stefan TI - Variation of stable birational types in positive characteristic JO - Épijournal de Géométrie Algébrique PY - 2019 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume3.5728/ DO - 10.46298/epiga.2020.volume3.5728 LA - en ID - 10_46298_epiga_2020_volume3_5728 ER -
%0 Journal Article %A Schreieder, Stefan %T Variation of stable birational types in positive characteristic %J Épijournal de Géométrie Algébrique %D 2019 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume3.5728/ %R 10.46298/epiga.2020.volume3.5728 %G en %F 10_46298_epiga_2020_volume3_5728
Schreieder, Stefan. Variation of stable birational types in positive characteristic. Épijournal de Géométrie Algébrique, Tome 3 (2019). doi: 10.46298/epiga.2020.volume3.5728
Cité par Sources :