Weighted Projective Lines and Rational Surface Singularities
    
    
  
  
  
      
      
      
        
Épijournal de Géométrie Algébrique, Tome 3 (2019)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Episciences
            
              In this paper we study rational surface singularities R with star shaped dual graphs, and under very mild assumptions on the self-intersection numbers we give an explicit description of all their special Cohen-Macaulay modules. We do this by realising R as a certain Z-graded Veronese subring S^x of the homogeneous coordinate ring S of the Geigle-Lenzing weighted projective line X, and we realise the special CM modules as explicitly described summands of the canonical tilting bundle on X. We then give a second proof that these are special CM modules by comparing qgr S^x and coh X, and we also give a necessary and sufficient combinatorial criterion for these to be equivalent categories. In turn, we show that qgr S^x is equivalent to qgr of the reconstruction algebra, and that the degree zero piece of the reconstruction algebra coincides with Ringel's canonical algebra. This implies that the reconstruction algebra contains the canonical algebra, and furthermore its qgr category is derived equivalent to the canonical algebra, thus linking the reconstruction algebra of rational surface singularities to the canonical algebra of representation theory.
            
            
            
          
        
      @article{10_46298_epiga_2020_volume3_4761,
     author = {Iyama, Osamu and Wemyss, Michael},
     title = {Weighted {Projective} {Lines} and {Rational} {Surface} {Singularities}},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {3},
     year = {2019},
     doi = {10.46298/epiga.2020.volume3.4761},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume3.4761/}
}
                      
                      
                    TY - JOUR AU - Iyama, Osamu AU - Wemyss, Michael TI - Weighted Projective Lines and Rational Surface Singularities JO - Épijournal de Géométrie Algébrique PY - 2019 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume3.4761/ DO - 10.46298/epiga.2020.volume3.4761 LA - en ID - 10_46298_epiga_2020_volume3_4761 ER -
%0 Journal Article %A Iyama, Osamu %A Wemyss, Michael %T Weighted Projective Lines and Rational Surface Singularities %J Épijournal de Géométrie Algébrique %D 2019 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume3.4761/ %R 10.46298/epiga.2020.volume3.4761 %G en %F 10_46298_epiga_2020_volume3_4761
Iyama, Osamu; Wemyss, Michael. Weighted Projective Lines and Rational Surface Singularities. Épijournal de Géométrie Algébrique, Tome 3 (2019). doi: 10.46298/epiga.2020.volume3.4761
Cité par Sources :
