P-adic lattices are not Kähler groups
Épijournal de Géométrie Algébrique, Tome 3 (2019)

Voir la notice de l'article provenant de la source Episciences

In this note we show that any lattice in a simple p-adic Lie group is not the fundamental group of a compact Ka"hler manifold, as well as some variants of this result.
@article{10_46298_epiga_2019_volume3_4842,
     author = {Klingler, Bruno},
     title = {P-adic lattices are not {K\"ahler} groups},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {3},
     year = {2019},
     doi = {10.46298/epiga.2019.volume3.4842},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2019.volume3.4842/}
}
TY  - JOUR
AU  - Klingler, Bruno
TI  - P-adic lattices are not Kähler groups
JO  - Épijournal de Géométrie Algébrique
PY  - 2019
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2019.volume3.4842/
DO  - 10.46298/epiga.2019.volume3.4842
LA  - en
ID  - 10_46298_epiga_2019_volume3_4842
ER  - 
%0 Journal Article
%A Klingler, Bruno
%T P-adic lattices are not Kähler groups
%J Épijournal de Géométrie Algébrique
%D 2019
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2019.volume3.4842/
%R 10.46298/epiga.2019.volume3.4842
%G en
%F 10_46298_epiga_2019_volume3_4842
Klingler, Bruno. P-adic lattices are not Kähler groups. Épijournal de Géométrie Algébrique, Tome 3 (2019). doi: 10.46298/epiga.2019.volume3.4842

Cité par Sources :