Pluricomplex Green's functions and Fano manifolds
Épijournal de Géométrie Algébrique, Tome 3 (2019)
Voir la notice de l'article provenant de la source Episciences
We show that if a Fano manifold does not admit Kahler-Einstein metrics then the Kahler potentials along the continuity method subconverge to a function with analytic singularities along a subvariety which solves the homogeneous complex Monge-Ampere equation on its complement, confirming an expectation of Tian-Yau.
@article{10_46298_epiga_2019_volume3_4706,
author = {McCleerey, Nicholas and Tosatti, Valentino},
title = {Pluricomplex {Green's} functions and {Fano} manifolds},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {3},
year = {2019},
doi = {10.46298/epiga.2019.volume3.4706},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2019.volume3.4706/}
}
TY - JOUR AU - McCleerey, Nicholas AU - Tosatti, Valentino TI - Pluricomplex Green's functions and Fano manifolds JO - Épijournal de Géométrie Algébrique PY - 2019 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2019.volume3.4706/ DO - 10.46298/epiga.2019.volume3.4706 LA - en ID - 10_46298_epiga_2019_volume3_4706 ER -
%0 Journal Article %A McCleerey, Nicholas %A Tosatti, Valentino %T Pluricomplex Green's functions and Fano manifolds %J Épijournal de Géométrie Algébrique %D 2019 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2019.volume3.4706/ %R 10.46298/epiga.2019.volume3.4706 %G en %F 10_46298_epiga_2019_volume3_4706
McCleerey, Nicholas; Tosatti, Valentino. Pluricomplex Green's functions and Fano manifolds. Épijournal de Géométrie Algébrique, Tome 3 (2019). doi: 10.46298/epiga.2019.volume3.4706
Cité par Sources :