Pluricomplex Green's functions and Fano manifolds
Épijournal de Géométrie Algébrique, Tome 3 (2019)

Voir la notice de l'article provenant de la source Episciences

We show that if a Fano manifold does not admit Kahler-Einstein metrics then the Kahler potentials along the continuity method subconverge to a function with analytic singularities along a subvariety which solves the homogeneous complex Monge-Ampere equation on its complement, confirming an expectation of Tian-Yau.
@article{10_46298_epiga_2019_volume3_4706,
     author = {McCleerey, Nicholas and Tosatti, Valentino},
     title = {Pluricomplex {Green's} functions and {Fano} manifolds},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {3},
     year = {2019},
     doi = {10.46298/epiga.2019.volume3.4706},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2019.volume3.4706/}
}
TY  - JOUR
AU  - McCleerey, Nicholas
AU  - Tosatti, Valentino
TI  - Pluricomplex Green's functions and Fano manifolds
JO  - Épijournal de Géométrie Algébrique
PY  - 2019
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2019.volume3.4706/
DO  - 10.46298/epiga.2019.volume3.4706
LA  - en
ID  - 10_46298_epiga_2019_volume3_4706
ER  - 
%0 Journal Article
%A McCleerey, Nicholas
%A Tosatti, Valentino
%T Pluricomplex Green's functions and Fano manifolds
%J Épijournal de Géométrie Algébrique
%D 2019
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2019.volume3.4706/
%R 10.46298/epiga.2019.volume3.4706
%G en
%F 10_46298_epiga_2019_volume3_4706
McCleerey, Nicholas; Tosatti, Valentino. Pluricomplex Green's functions and Fano manifolds. Épijournal de Géométrie Algébrique, Tome 3 (2019). doi: 10.46298/epiga.2019.volume3.4706

Cité par Sources :