Equivariant perverse sheaves on Coxeter arrangements and buildings
Épijournal de Géométrie Algébrique, Tome 3 (2019)

Voir la notice de l'article provenant de la source Episciences

When $W$ is a finite Coxeter group acting by its reflection representation on $E$, we describe the category ${\mathsf{Perv}}_W(E_{\mathbb C}, {\mathcal{H}}_{\mathbb C})$ of $W$-equivariant perverse sheaves on $E_{\mathbb C}$, smooth with respect to the stratification by reflection hyperplanes. By using Kapranov and Schechtman's recent analysis of perverse sheaves on hyperplane arrangements, we find an equivalence of categories from ${\mathsf{Perv}}_W(E_{\mathbb C}, {\mathcal{H}}_{\mathbb C})$ to a category of finite-dimensional modules over an algebra given by explicit generators and relations. We also define categories of equivariant perverse sheaves on affine buildings, e.g., $G$-equivariant perverse sheaves on the Bruhat–Tits building of a $p$-adic group $G$. In this setting, we find that a construction of Schneider and Stuhler gives equivariant perverse sheaves associated to depth zero representations.
@article{10_46298_epiga_2019_volume3_4353,
     author = {Weissman, Martin H.},
     title = {Equivariant perverse sheaves on {Coxeter} arrangements and buildings},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {3},
     year = {2019},
     doi = {10.46298/epiga.2019.volume3.4353},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2019.volume3.4353/}
}
TY  - JOUR
AU  - Weissman, Martin H.
TI  - Equivariant perverse sheaves on Coxeter arrangements and buildings
JO  - Épijournal de Géométrie Algébrique
PY  - 2019
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2019.volume3.4353/
DO  - 10.46298/epiga.2019.volume3.4353
LA  - en
ID  - 10_46298_epiga_2019_volume3_4353
ER  - 
%0 Journal Article
%A Weissman, Martin H.
%T Equivariant perverse sheaves on Coxeter arrangements and buildings
%J Épijournal de Géométrie Algébrique
%D 2019
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2019.volume3.4353/
%R 10.46298/epiga.2019.volume3.4353
%G en
%F 10_46298_epiga_2019_volume3_4353
Weissman, Martin H. Equivariant perverse sheaves on Coxeter arrangements and buildings. Épijournal de Géométrie Algébrique, Tome 3 (2019). doi: 10.46298/epiga.2019.volume3.4353

Cité par Sources :