Q_l-cohomology projective planes and singular Enriques surfaces in characteristic two
Épijournal de Géométrie Algébrique, Tome 3 (2019)
Voir la notice de l'article provenant de la source Episciences
We classify singular Enriques surfaces in characteristic two supporting a rank nine configuration of smooth rational curves. They come in one-dimensional families defined over the prime field, paralleling the situation in other characteristics, but featuring novel aspects. Contracting the given rational curves, one can derive algebraic surfaces with isolated ADE-singularities and trivial canonical bundle whose Q_l-cohomology equals that of a projective plane. Similar existence results are developed for classical Enriques surfaces. We also work out an application to integral models of Enriques surfaces (and K3 surfaces).
@article{10_46298_epiga_2019_volume3_3990,
author = {Sch\"utt, Matthias},
title = {Q_l-cohomology projective planes and singular {Enriques} surfaces in characteristic two},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {3},
year = {2019},
doi = {10.46298/epiga.2019.volume3.3990},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2019.volume3.3990/}
}
TY - JOUR AU - Schütt, Matthias TI - Q_l-cohomology projective planes and singular Enriques surfaces in characteristic two JO - Épijournal de Géométrie Algébrique PY - 2019 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2019.volume3.3990/ DO - 10.46298/epiga.2019.volume3.3990 LA - en ID - 10_46298_epiga_2019_volume3_3990 ER -
%0 Journal Article %A Schütt, Matthias %T Q_l-cohomology projective planes and singular Enriques surfaces in characteristic two %J Épijournal de Géométrie Algébrique %D 2019 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2019.volume3.3990/ %R 10.46298/epiga.2019.volume3.3990 %G en %F 10_46298_epiga_2019_volume3_3990
Schütt, Matthias. Q_l-cohomology projective planes and singular Enriques surfaces in characteristic two. Épijournal de Géométrie Algébrique, Tome 3 (2019). doi: 10.46298/epiga.2019.volume3.3990
Cité par Sources :