Double spinor Calabi-Yau varieties
Épijournal de Géométrie Algébrique, Tome 3 (2019)

Voir la notice de l'article provenant de la source Episciences

Consider the ten-dimensional spinor variety in the projectivization of a half-spin representation of dimension sixteen. The intersection X of two general translates of this variety is a smooth Calabi-Yau fivefold, as well as the intersection Y of their projective duals. We prove that although X and Y are not birationally equivalent, they are derived equivalent and L-equivalent in the sense of Kuznetsov and Shinder.
@article{10_46298_epiga_2019_volume3_3965,
     author = {Manivel, Laurent},
     title = {Double spinor {Calabi-Yau} varieties},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {3},
     year = {2019},
     doi = {10.46298/epiga.2019.volume3.3965},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2019.volume3.3965/}
}
TY  - JOUR
AU  - Manivel, Laurent
TI  - Double spinor Calabi-Yau varieties
JO  - Épijournal de Géométrie Algébrique
PY  - 2019
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2019.volume3.3965/
DO  - 10.46298/epiga.2019.volume3.3965
LA  - en
ID  - 10_46298_epiga_2019_volume3_3965
ER  - 
%0 Journal Article
%A Manivel, Laurent
%T Double spinor Calabi-Yau varieties
%J Épijournal de Géométrie Algébrique
%D 2019
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2019.volume3.3965/
%R 10.46298/epiga.2019.volume3.3965
%G en
%F 10_46298_epiga_2019_volume3_3965
Manivel, Laurent. Double spinor Calabi-Yau varieties. Épijournal de Géométrie Algébrique, Tome 3 (2019). doi: 10.46298/epiga.2019.volume3.3965

Cité par Sources :