Algebraic models of the Euclidean plane
Épijournal de Géométrie Algébrique, Tome 2 (2018)

Voir la notice de l'article provenant de la source Episciences

We introduce a new invariant, the real (logarithmic)-Kodaira dimension, that allows to distinguish smooth real algebraic surfaces up to birational diffeomorphism. As an application, we construct infinite families of smooth rational real algebraic surfaces with trivial homology groups, whose real loci are diffeomorphic to $\mathbb{R}^2$, but which are pairwise not birationally diffeomorphic. There are thus infinitely many non-trivial models of the euclidean plane, contrary to the compact case.
@article{10_46298_epiga_2018_volume2_4511,
     author = {Blanc, J\'er\'emy and Dubouloz, Adrien},
     title = {Algebraic models of the {Euclidean} plane},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {2},
     year = {2018},
     doi = {10.46298/epiga.2018.volume2.4511},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4511/}
}
TY  - JOUR
AU  - Blanc, Jérémy
AU  - Dubouloz, Adrien
TI  - Algebraic models of the Euclidean plane
JO  - Épijournal de Géométrie Algébrique
PY  - 2018
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4511/
DO  - 10.46298/epiga.2018.volume2.4511
LA  - en
ID  - 10_46298_epiga_2018_volume2_4511
ER  - 
%0 Journal Article
%A Blanc, Jérémy
%A Dubouloz, Adrien
%T Algebraic models of the Euclidean plane
%J Épijournal de Géométrie Algébrique
%D 2018
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4511/
%R 10.46298/epiga.2018.volume2.4511
%G en
%F 10_46298_epiga_2018_volume2_4511
Blanc, Jérémy; Dubouloz, Adrien. Algebraic models of the Euclidean plane. Épijournal de Géométrie Algébrique, Tome 2 (2018). doi: 10.46298/epiga.2018.volume2.4511

Cité par Sources :