Algebraic models of the Euclidean plane
Épijournal de Géométrie Algébrique, Tome 2 (2018)
Voir la notice de l'article provenant de la source Episciences
We introduce a new invariant, the real (logarithmic)-Kodaira dimension, that allows to distinguish smooth real algebraic surfaces up to birational diffeomorphism. As an application, we construct infinite families of smooth rational real algebraic surfaces with trivial homology groups, whose real loci are diffeomorphic to $\mathbb{R}^2$, but which are pairwise not birationally diffeomorphic. There are thus infinitely many non-trivial models of the euclidean plane, contrary to the compact case.
@article{10_46298_epiga_2018_volume2_4511,
author = {Blanc, J\'er\'emy and Dubouloz, Adrien},
title = {Algebraic models of the {Euclidean} plane},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {2},
year = {2018},
doi = {10.46298/epiga.2018.volume2.4511},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4511/}
}
TY - JOUR AU - Blanc, Jérémy AU - Dubouloz, Adrien TI - Algebraic models of the Euclidean plane JO - Épijournal de Géométrie Algébrique PY - 2018 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4511/ DO - 10.46298/epiga.2018.volume2.4511 LA - en ID - 10_46298_epiga_2018_volume2_4511 ER -
%0 Journal Article %A Blanc, Jérémy %A Dubouloz, Adrien %T Algebraic models of the Euclidean plane %J Épijournal de Géométrie Algébrique %D 2018 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4511/ %R 10.46298/epiga.2018.volume2.4511 %G en %F 10_46298_epiga_2018_volume2_4511
Blanc, Jérémy; Dubouloz, Adrien. Algebraic models of the Euclidean plane. Épijournal de Géométrie Algébrique, Tome 2 (2018). doi: 10.46298/epiga.2018.volume2.4511
Cité par Sources :