Hamiltonian actions of unipotent groups on compact Kähler manifolds
Épijournal de Géométrie Algébrique, Tome 2 (2018)

Voir la notice de l'article provenant de la source Episciences

We study meromorphic actions of unipotent complex Lie groups on compact K"ahler manifolds using moment map techniques. We introduce natural stability conditions and show that sets of semistable points are Zariski-open and admit geometric quotients that carry compactifiable K"ahler structures obtained by symplectic reduction. The relation of our complex-analytic theory to the work of Doran–Kirwan regarding the Geometric Invariant Theory of unipotent group actions on projective varieties is discussed in detail.
@article{10_46298_epiga_2018_volume2_4486,
     author = {Greb, Daniel and Miebach, Christian},
     title = {Hamiltonian actions of unipotent groups on compact {K\"ahler} manifolds},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {2},
     year = {2018},
     doi = {10.46298/epiga.2018.volume2.4486},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4486/}
}
TY  - JOUR
AU  - Greb, Daniel
AU  - Miebach, Christian
TI  - Hamiltonian actions of unipotent groups on compact Kähler manifolds
JO  - Épijournal de Géométrie Algébrique
PY  - 2018
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4486/
DO  - 10.46298/epiga.2018.volume2.4486
LA  - en
ID  - 10_46298_epiga_2018_volume2_4486
ER  - 
%0 Journal Article
%A Greb, Daniel
%A Miebach, Christian
%T Hamiltonian actions of unipotent groups on compact Kähler manifolds
%J Épijournal de Géométrie Algébrique
%D 2018
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4486/
%R 10.46298/epiga.2018.volume2.4486
%G en
%F 10_46298_epiga_2018_volume2_4486
Greb, Daniel; Miebach, Christian. Hamiltonian actions of unipotent groups on compact Kähler manifolds. Épijournal de Géométrie Algébrique, Tome 2 (2018). doi: 10.46298/epiga.2018.volume2.4486

Cité par Sources :