A characterization of finite vector bundles on Gauduchon astheno-Kahler manifolds
Épijournal de Géométrie Algébrique, Tome 2 (2018)
Voir la notice de l'article provenant de la source Episciences
A vector bundle E on a projective variety X is called finite if it satisfies a nontrivial polynomial equation with integral coefficients. A theorem of Nori implies that E is finite if and only if the pullback of E to some finite etale Galois covering of X is trivial. We prove the same statement when X is a compact complex manifold admitting a Gauduchon astheno-Kahler metric.
@article{10_46298_epiga_2018_volume2_4209,
author = {Biswas, Indranil and Pingali, Vamsi Pritham},
title = {A characterization of finite vector bundles on {Gauduchon} {astheno-Kahler} manifolds},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {2},
year = {2018},
doi = {10.46298/epiga.2018.volume2.4209},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4209/}
}
TY - JOUR AU - Biswas, Indranil AU - Pingali, Vamsi Pritham TI - A characterization of finite vector bundles on Gauduchon astheno-Kahler manifolds JO - Épijournal de Géométrie Algébrique PY - 2018 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4209/ DO - 10.46298/epiga.2018.volume2.4209 LA - en ID - 10_46298_epiga_2018_volume2_4209 ER -
%0 Journal Article %A Biswas, Indranil %A Pingali, Vamsi Pritham %T A characterization of finite vector bundles on Gauduchon astheno-Kahler manifolds %J Épijournal de Géométrie Algébrique %D 2018 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4209/ %R 10.46298/epiga.2018.volume2.4209 %G en %F 10_46298_epiga_2018_volume2_4209
Biswas, Indranil; Pingali, Vamsi Pritham. A characterization of finite vector bundles on Gauduchon astheno-Kahler manifolds. Épijournal de Géométrie Algébrique, Tome 2 (2018). doi: 10.46298/epiga.2018.volume2.4209
Cité par Sources :