Lefschetz (1,1)-theorem in tropical geometry
Épijournal de Géométrie Algébrique, Tome 2 (2018)
Voir la notice de l'article provenant de la source Episciences
For a tropical manifold of dimension n we show that the tropical homology classes of degree (n-1, n-1) which arise as fundamental classes of tropical cycles are precisely those in the kernel of the eigenwave map. To prove this we establish a tropical version of the Lefschetz (1, 1)-theorem for rational polyhedral spaces that relates tropical line bundles to the kernel of the wave homomorphism on cohomology. Our result for tropical manifolds then follows by combining this with Poincaré duality for integral tropical homology.
@article{10_46298_epiga_2018_volume2_4126,
author = {Jell, Philipp and Rau, Johannes and Shaw, Kristin},
title = {Lefschetz (1,1)-theorem in tropical geometry},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {2},
year = {2018},
doi = {10.46298/epiga.2018.volume2.4126},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4126/}
}
TY - JOUR AU - Jell, Philipp AU - Rau, Johannes AU - Shaw, Kristin TI - Lefschetz (1,1)-theorem in tropical geometry JO - Épijournal de Géométrie Algébrique PY - 2018 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4126/ DO - 10.46298/epiga.2018.volume2.4126 LA - en ID - 10_46298_epiga_2018_volume2_4126 ER -
%0 Journal Article %A Jell, Philipp %A Rau, Johannes %A Shaw, Kristin %T Lefschetz (1,1)-theorem in tropical geometry %J Épijournal de Géométrie Algébrique %D 2018 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4126/ %R 10.46298/epiga.2018.volume2.4126 %G en %F 10_46298_epiga_2018_volume2_4126
Jell, Philipp; Rau, Johannes; Shaw, Kristin. Lefschetz (1,1)-theorem in tropical geometry. Épijournal de Géométrie Algébrique, Tome 2 (2018). doi: 10.46298/epiga.2018.volume2.4126
Cité par Sources :