Smoothing cones over K3 surfaces
Épijournal de Géométrie Algébrique, Tome 2 (2018)
Voir la notice de l'article provenant de la source Episciences
We prove that the affine cone over a general primitively polarised K3 surface of genus g is smoothable if and only if g ≤ 10 or g = 12. We also give several examples of singularities with special behaviour, such as surfaces whose affine cone is smoothable even though the projective cone is not.
@article{10_46298_epiga_2018_volume2_4055,
author = {Coughlan, Stephen and Sano, Taro},
title = {Smoothing cones over {K3} surfaces},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {2},
year = {2018},
doi = {10.46298/epiga.2018.volume2.4055},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4055/}
}
TY - JOUR AU - Coughlan, Stephen AU - Sano, Taro TI - Smoothing cones over K3 surfaces JO - Épijournal de Géométrie Algébrique PY - 2018 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4055/ DO - 10.46298/epiga.2018.volume2.4055 LA - en ID - 10_46298_epiga_2018_volume2_4055 ER -
%0 Journal Article %A Coughlan, Stephen %A Sano, Taro %T Smoothing cones over K3 surfaces %J Épijournal de Géométrie Algébrique %D 2018 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4055/ %R 10.46298/epiga.2018.volume2.4055 %G en %F 10_46298_epiga_2018_volume2_4055
Coughlan, Stephen; Sano, Taro. Smoothing cones over K3 surfaces. Épijournal de Géométrie Algébrique, Tome 2 (2018). doi: 10.46298/epiga.2018.volume2.4055
Cité par Sources :