Smoothing cones over K3 surfaces
Épijournal de Géométrie Algébrique, Tome 2 (2018)

Voir la notice de l'article provenant de la source Episciences

We prove that the affine cone over a general primitively polarised K3 surface of genus g is smoothable if and only if g ≤ 10 or g = 12. We also give several examples of singularities with special behaviour, such as surfaces whose affine cone is smoothable even though the projective cone is not.
@article{10_46298_epiga_2018_volume2_4055,
     author = {Coughlan, Stephen and Sano, Taro},
     title = {Smoothing cones over {K3} surfaces},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {2},
     year = {2018},
     doi = {10.46298/epiga.2018.volume2.4055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4055/}
}
TY  - JOUR
AU  - Coughlan, Stephen
AU  - Sano, Taro
TI  - Smoothing cones over K3 surfaces
JO  - Épijournal de Géométrie Algébrique
PY  - 2018
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4055/
DO  - 10.46298/epiga.2018.volume2.4055
LA  - en
ID  - 10_46298_epiga_2018_volume2_4055
ER  - 
%0 Journal Article
%A Coughlan, Stephen
%A Sano, Taro
%T Smoothing cones over K3 surfaces
%J Épijournal de Géométrie Algébrique
%D 2018
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.4055/
%R 10.46298/epiga.2018.volume2.4055
%G en
%F 10_46298_epiga_2018_volume2_4055
Coughlan, Stephen; Sano, Taro. Smoothing cones over K3 surfaces. Épijournal de Géométrie Algébrique, Tome 2 (2018). doi: 10.46298/epiga.2018.volume2.4055

Cité par Sources :