Hyper-Kähler Fourfolds Fibered by Elliptic Products
Épijournal de Géométrie Algébrique, Tome 2 (2018)
Voir la notice de l'article provenant de la source Episciences
Every fibration of a projective hyper-K"ahler fourfold has fibers which are Abelian surfaces. In case the Abelian surface is a Jacobian of a genus two curve, these have been classified by Markushevich. We study those cases where the Abelian surface is a product of two elliptic curves, under some mild genericity hypotheses.
@article{10_46298_epiga_2018_volume2_3983,
author = {Kamenova, Ljudmila},
title = {Hyper-K\"ahler {Fourfolds} {Fibered} by {Elliptic} {Products}},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {2},
year = {2018},
doi = {10.46298/epiga.2018.volume2.3983},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.3983/}
}
TY - JOUR AU - Kamenova, Ljudmila TI - Hyper-Kähler Fourfolds Fibered by Elliptic Products JO - Épijournal de Géométrie Algébrique PY - 2018 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.3983/ DO - 10.46298/epiga.2018.volume2.3983 LA - en ID - 10_46298_epiga_2018_volume2_3983 ER -
%0 Journal Article %A Kamenova, Ljudmila %T Hyper-Kähler Fourfolds Fibered by Elliptic Products %J Épijournal de Géométrie Algébrique %D 2018 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.3983/ %R 10.46298/epiga.2018.volume2.3983 %G en %F 10_46298_epiga_2018_volume2_3983
Kamenova, Ljudmila. Hyper-Kähler Fourfolds Fibered by Elliptic Products. Épijournal de Géométrie Algébrique, Tome 2 (2018). doi: 10.46298/epiga.2018.volume2.3983
Cité par Sources :