Hyper-Kähler Fourfolds Fibered by Elliptic Products
Épijournal de Géométrie Algébrique, Tome 2 (2018)

Voir la notice de l'article provenant de la source Episciences

Every fibration of a projective hyper-K"ahler fourfold has fibers which are Abelian surfaces. In case the Abelian surface is a Jacobian of a genus two curve, these have been classified by Markushevich. We study those cases where the Abelian surface is a product of two elliptic curves, under some mild genericity hypotheses.
@article{10_46298_epiga_2018_volume2_3983,
     author = {Kamenova, Ljudmila},
     title = {Hyper-K\"ahler {Fourfolds} {Fibered} by {Elliptic} {Products}},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {2},
     year = {2018},
     doi = {10.46298/epiga.2018.volume2.3983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.3983/}
}
TY  - JOUR
AU  - Kamenova, Ljudmila
TI  - Hyper-Kähler Fourfolds Fibered by Elliptic Products
JO  - Épijournal de Géométrie Algébrique
PY  - 2018
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.3983/
DO  - 10.46298/epiga.2018.volume2.3983
LA  - en
ID  - 10_46298_epiga_2018_volume2_3983
ER  - 
%0 Journal Article
%A Kamenova, Ljudmila
%T Hyper-Kähler Fourfolds Fibered by Elliptic Products
%J Épijournal de Géométrie Algébrique
%D 2018
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.3983/
%R 10.46298/epiga.2018.volume2.3983
%G en
%F 10_46298_epiga_2018_volume2_3983
Kamenova, Ljudmila. Hyper-Kähler Fourfolds Fibered by Elliptic Products. Épijournal de Géométrie Algébrique, Tome 2 (2018). doi: 10.46298/epiga.2018.volume2.3983

Cité par Sources :