Crepant resolutions and open strings II
Épijournal de Géométrie Algébrique, Tome 2 (2018)
Voir la notice de l'article provenant de la source Episciences
We recently formulated a number of Crepant Resolution Conjectures (CRC) for open Gromov-Witten invariants of Aganagic-Vafa Lagrangian branes and verified them for the family of threefold type A-singularities. In this paper we enlarge the body of evidence in favor of our open CRCs, along two different strands. In one direction, we consider non-hard Lefschetz targets and verify the disk CRC for local weighted projective planes. In the other, we complete the proof of the quantized (all-genus) open CRC for hard Lefschetz toric Calabi-Yau three dimensional representations by a detailed study of the G-Hilb resolution of $[C^3/G]$ for $G=\mathbb{Z}_2 \times \mathbb{Z}_2$. Our results have implications for closed-string CRCs of Coates-Iritani-Tseng, Iritani, and Ruan for this class of examples.
@article{10_46298_epiga_2018_volume2_3879,
author = {Brini, Andrea and Cavalieri, Renzo},
title = {Crepant resolutions and open strings {II}},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {2},
year = {2018},
doi = {10.46298/epiga.2018.volume2.3879},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.3879/}
}
TY - JOUR AU - Brini, Andrea AU - Cavalieri, Renzo TI - Crepant resolutions and open strings II JO - Épijournal de Géométrie Algébrique PY - 2018 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.3879/ DO - 10.46298/epiga.2018.volume2.3879 LA - en ID - 10_46298_epiga_2018_volume2_3879 ER -
%0 Journal Article %A Brini, Andrea %A Cavalieri, Renzo %T Crepant resolutions and open strings II %J Épijournal de Géométrie Algébrique %D 2018 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.3879/ %R 10.46298/epiga.2018.volume2.3879 %G en %F 10_46298_epiga_2018_volume2_3879
Brini, Andrea; Cavalieri, Renzo. Crepant resolutions and open strings II. Épijournal de Géométrie Algébrique, Tome 2 (2018). doi: 10.46298/epiga.2018.volume2.3879
Cité par Sources :