On the Prym variety of genus 3 covers of genus 1 curves
Épijournal de Géométrie Algébrique, Tome 2 (2018)
Voir la notice de l'article provenant de la source Episciences
Given a generic degree-2 cover of a genus 1 curve D by a non hyperelliptic genus 3 curve C over a field k of characteristic different from 2, we produce an explicit genus 2 curve X such that Jac(C) is isogenous to the product of Jac(D) and Jac(X). This construction can be seen as a degenerate case of a result by Nils Bruin.
@article{10_46298_epiga_2018_volume2_3663,
author = {Ritzenthaler, Christophe and Romagny, Matthieu},
title = {On the {Prym} variety of genus 3 covers of genus 1 curves},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {2},
year = {2018},
doi = {10.46298/epiga.2018.volume2.3663},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.3663/}
}
TY - JOUR AU - Ritzenthaler, Christophe AU - Romagny, Matthieu TI - On the Prym variety of genus 3 covers of genus 1 curves JO - Épijournal de Géométrie Algébrique PY - 2018 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.3663/ DO - 10.46298/epiga.2018.volume2.3663 LA - en ID - 10_46298_epiga_2018_volume2_3663 ER -
%0 Journal Article %A Ritzenthaler, Christophe %A Romagny, Matthieu %T On the Prym variety of genus 3 covers of genus 1 curves %J Épijournal de Géométrie Algébrique %D 2018 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.3663/ %R 10.46298/epiga.2018.volume2.3663 %G en %F 10_46298_epiga_2018_volume2_3663
Ritzenthaler, Christophe; Romagny, Matthieu. On the Prym variety of genus 3 covers of genus 1 curves. Épijournal de Géométrie Algébrique, Tome 2 (2018). doi: 10.46298/epiga.2018.volume2.3663
Cité par Sources :