On the Prym variety of genus 3 covers of genus 1 curves
Épijournal de Géométrie Algébrique, Tome 2 (2018)

Voir la notice de l'article provenant de la source Episciences

Given a generic degree-2 cover of a genus 1 curve D by a non hyperelliptic genus 3 curve C over a field k of characteristic different from 2, we produce an explicit genus 2 curve X such that Jac(C) is isogenous to the product of Jac(D) and Jac(X). This construction can be seen as a degenerate case of a result by Nils Bruin.
@article{10_46298_epiga_2018_volume2_3663,
     author = {Ritzenthaler, Christophe and Romagny, Matthieu},
     title = {On the {Prym} variety of genus 3 covers of genus 1 curves},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {2},
     year = {2018},
     doi = {10.46298/epiga.2018.volume2.3663},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.3663/}
}
TY  - JOUR
AU  - Ritzenthaler, Christophe
AU  - Romagny, Matthieu
TI  - On the Prym variety of genus 3 covers of genus 1 curves
JO  - Épijournal de Géométrie Algébrique
PY  - 2018
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.3663/
DO  - 10.46298/epiga.2018.volume2.3663
LA  - en
ID  - 10_46298_epiga_2018_volume2_3663
ER  - 
%0 Journal Article
%A Ritzenthaler, Christophe
%A Romagny, Matthieu
%T On the Prym variety of genus 3 covers of genus 1 curves
%J Épijournal de Géométrie Algébrique
%D 2018
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2018.volume2.3663/
%R 10.46298/epiga.2018.volume2.3663
%G en
%F 10_46298_epiga_2018_volume2_3663
Ritzenthaler, Christophe; Romagny, Matthieu. On the Prym variety of genus 3 covers of genus 1 curves. Épijournal de Géométrie Algébrique, Tome 2 (2018). doi: 10.46298/epiga.2018.volume2.3663

Cité par Sources :