On a theorem of Campana and Păun
Épijournal de Géométrie Algébrique, Tome 1 (2017)

Voir la notice de l'article provenant de la source Episciences

Let $X$ be a smooth projective variety over the complex numbers, and $\Delta \subseteq X$ a reduced divisor with normal crossings. We present a slightly simplified proof for the following theorem of Campana and Păun: If some tensor power of the bundle $\Omega_X^1(\log \Delta)$ contains a subsheaf with big determinant, then $(X, \Delta)$ is of log general type. This result is a key step in the recent proof of Viehweg's hyperbolicity conjecture.
@article{10_46298_epiga_2017_volume1_3281,
     author = {Schnell, Christian},
     title = {On a theorem of {Campana} and {P\u{a}un}},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {1},
     year = {2017},
     doi = {10.46298/epiga.2017.volume1.3281},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.3281/}
}
TY  - JOUR
AU  - Schnell, Christian
TI  - On a theorem of Campana and Păun
JO  - Épijournal de Géométrie Algébrique
PY  - 2017
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.3281/
DO  - 10.46298/epiga.2017.volume1.3281
LA  - en
ID  - 10_46298_epiga_2017_volume1_3281
ER  - 
%0 Journal Article
%A Schnell, Christian
%T On a theorem of Campana and Păun
%J Épijournal de Géométrie Algébrique
%D 2017
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.3281/
%R 10.46298/epiga.2017.volume1.3281
%G en
%F 10_46298_epiga_2017_volume1_3281
Schnell, Christian. On a theorem of Campana and Păun. Épijournal de Géométrie Algébrique, Tome 1 (2017). doi: 10.46298/epiga.2017.volume1.3281

Cité par Sources :