On a theorem of Campana and Păun
Épijournal de Géométrie Algébrique, Tome 1 (2017)
Voir la notice de l'article provenant de la source Episciences
Let $X$ be a smooth projective variety over the complex numbers, and $\Delta \subseteq X$ a reduced divisor with normal crossings. We present a slightly simplified proof for the following theorem of Campana and Păun: If some tensor power of the bundle $\Omega_X^1(\log \Delta)$ contains a subsheaf with big determinant, then $(X, \Delta)$ is of log general type. This result is a key step in the recent proof of Viehweg's hyperbolicity conjecture.
@article{10_46298_epiga_2017_volume1_3281,
author = {Schnell, Christian},
title = {On a theorem of {Campana} and {P\u{a}un}},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {1},
year = {2017},
doi = {10.46298/epiga.2017.volume1.3281},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.3281/}
}
TY - JOUR AU - Schnell, Christian TI - On a theorem of Campana and Păun JO - Épijournal de Géométrie Algébrique PY - 2017 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.3281/ DO - 10.46298/epiga.2017.volume1.3281 LA - en ID - 10_46298_epiga_2017_volume1_3281 ER -
Schnell, Christian. On a theorem of Campana and Păun. Épijournal de Géométrie Algébrique, Tome 1 (2017). doi: 10.46298/epiga.2017.volume1.3281
Cité par Sources :