On complete reducibility in characteristic $p$
Épijournal de Géométrie Algébrique, Tome 1 (2017)

Voir la notice de l'article provenant de la source Episciences

Let $G$ be a reductive group over a field $k$ which is algebraically closed of characteristic $p \neq 0$. We prove a structure theorem for a class of subgroup schemes of $G$, for $p$ bounded below by the Coxeter number of $G$. As applications, we derive semi-simplicity results, generalizing earlier results of Serre proven in 1998, and also obtain an analogue of Luna's étale slice theorem for suitable bounds on $p$.
@article{10_46298_epiga_2017_volume1_2201,
     author = {Balaji, V. and Deligne, P. and Parameswaran, A. J.},
     title = {On complete reducibility in characteristic $p$},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {1},
     year = {2017},
     doi = {10.46298/epiga.2017.volume1.2201},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.2201/}
}
TY  - JOUR
AU  - Balaji, V.
AU  - Deligne, P.
AU  - Parameswaran, A. J.
TI  - On complete reducibility in characteristic $p$
JO  - Épijournal de Géométrie Algébrique
PY  - 2017
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.2201/
DO  - 10.46298/epiga.2017.volume1.2201
LA  - en
ID  - 10_46298_epiga_2017_volume1_2201
ER  - 
%0 Journal Article
%A Balaji, V.
%A Deligne, P.
%A Parameswaran, A. J.
%T On complete reducibility in characteristic $p$
%J Épijournal de Géométrie Algébrique
%D 2017
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.2201/
%R 10.46298/epiga.2017.volume1.2201
%G en
%F 10_46298_epiga_2017_volume1_2201
Balaji, V.; Deligne, P.; Parameswaran, A. J. On complete reducibility in characteristic $p$. Épijournal de Géométrie Algébrique, Tome 1 (2017). doi: 10.46298/epiga.2017.volume1.2201

Cité par Sources :