Correspondences between convex geometry and complex geometry
Épijournal de Géométrie Algébrique, Tome 1 (2017)
Voir la notice de l'article provenant de la source Episciences
We present several analogies between convex geometry and the theory of holomorphic line bundles on smooth projective varieties or K"ahler manifolds. We study the relation between positive products and mixed volumes. We define and study a Blaschke addition for divisor classes and mixed divisor classes, and prove new geometric inequalities for divisor classes. We also reinterpret several classical convex geometry results in the context of algebraic geometry: the Alexandrov body construction is the convex geometry version of divisorial Zariski decomposition; Minkowski's existence theorem is the convex geometry version of the duality between the pseudo-effective cone of divisors and the movable cone of curves.
@article{10_46298_epiga_2017_volume1_2038,
author = {Lehmann, Brian and Xiao, Jian},
title = {Correspondences between convex geometry and complex geometry},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {1},
year = {2017},
doi = {10.46298/epiga.2017.volume1.2038},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.2038/}
}
TY - JOUR AU - Lehmann, Brian AU - Xiao, Jian TI - Correspondences between convex geometry and complex geometry JO - Épijournal de Géométrie Algébrique PY - 2017 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.2038/ DO - 10.46298/epiga.2017.volume1.2038 LA - en ID - 10_46298_epiga_2017_volume1_2038 ER -
%0 Journal Article %A Lehmann, Brian %A Xiao, Jian %T Correspondences between convex geometry and complex geometry %J Épijournal de Géométrie Algébrique %D 2017 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.2038/ %R 10.46298/epiga.2017.volume1.2038 %G en %F 10_46298_epiga_2017_volume1_2038
Lehmann, Brian; Xiao, Jian. Correspondences between convex geometry and complex geometry. Épijournal de Géométrie Algébrique, Tome 1 (2017). doi: 10.46298/epiga.2017.volume1.2038
Cité par Sources :