Haas' theorem revisited
Épijournal de Géométrie Algébrique, Tome 1 (2017)
Voir la notice de l'article provenant de la source Episciences
Haas' theorem describes all partchworkings of a given non-singular plane tropical curve $C$ giving rise to a maximal real algebraic curve. The space of such patchworkings is naturally a linear subspace $W_C$ of the $\mathbb{Z}/2\mathbb{Z}$-vector space $\overrightarrow \Pi_C$ generated by the bounded edges of $C$, and whose origin is the Harnack patchworking. The aim of this note is to provide an interpretation of affine subspaces of $\overrightarrow \Pi_C $ parallel to $W_C$. To this purpose, we work in the setting of abstract graphs rather than plane tropical curves. We introduce a topological surface $S_\Gamma$ above a trivalent graph $\Gamma$, and consider a suitable affine space $\Pi_\Gamma$ of real structures on $S_\Gamma$ compatible with $\Gamma$. We characterise $W_\Gamma$ as the vector subspace of $\overrightarrow \Pi_\Gamma$ whose associated involutions induce the same action on $H_1(S_\Gamma,\mathbb{Z}/2\mathbb{Z})$. We then deduce from this statement another proof of Haas' original result.
@article{10_46298_epiga_2017_volume1_2030,
author = {Bertrand, Beno{\^\i}t and Brugall\'e, Erwan and Renaudineau, Arthur},
title = {Haas' theorem revisited},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {1},
year = {2017},
doi = {10.46298/epiga.2017.volume1.2030},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.2030/}
}
TY - JOUR AU - Bertrand, Benoît AU - Brugallé, Erwan AU - Renaudineau, Arthur TI - Haas' theorem revisited JO - Épijournal de Géométrie Algébrique PY - 2017 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.2030/ DO - 10.46298/epiga.2017.volume1.2030 LA - en ID - 10_46298_epiga_2017_volume1_2030 ER -
%0 Journal Article %A Bertrand, Benoît %A Brugallé, Erwan %A Renaudineau, Arthur %T Haas' theorem revisited %J Épijournal de Géométrie Algébrique %D 2017 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.2030/ %R 10.46298/epiga.2017.volume1.2030 %G en %F 10_46298_epiga_2017_volume1_2030
Bertrand, Benoît; Brugallé, Erwan; Renaudineau, Arthur. Haas' theorem revisited. Épijournal de Géométrie Algébrique, Tome 1 (2017). doi: 10.46298/epiga.2017.volume1.2030
Cité par Sources :