Haas' theorem revisited
Épijournal de Géométrie Algébrique, Tome 1 (2017)

Voir la notice de l'article provenant de la source Episciences

Haas' theorem describes all partchworkings of a given non-singular plane tropical curve $C$ giving rise to a maximal real algebraic curve. The space of such patchworkings is naturally a linear subspace $W_C$ of the $\mathbb{Z}/2\mathbb{Z}$-vector space $\overrightarrow \Pi_C$ generated by the bounded edges of $C$, and whose origin is the Harnack patchworking. The aim of this note is to provide an interpretation of affine subspaces of $\overrightarrow \Pi_C $ parallel to $W_C$. To this purpose, we work in the setting of abstract graphs rather than plane tropical curves. We introduce a topological surface $S_\Gamma$ above a trivalent graph $\Gamma$, and consider a suitable affine space $\Pi_\Gamma$ of real structures on $S_\Gamma$ compatible with $\Gamma$. We characterise $W_\Gamma$ as the vector subspace of $\overrightarrow \Pi_\Gamma$ whose associated involutions induce the same action on $H_1(S_\Gamma,\mathbb{Z}/2\mathbb{Z})$. We then deduce from this statement another proof of Haas' original result.
@article{10_46298_epiga_2017_volume1_2030,
     author = {Bertrand, Beno{\^\i}t and Brugall\'e, Erwan and Renaudineau, Arthur},
     title = {Haas' theorem revisited},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {1},
     year = {2017},
     doi = {10.46298/epiga.2017.volume1.2030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.2030/}
}
TY  - JOUR
AU  - Bertrand, Benoît
AU  - Brugallé, Erwan
AU  - Renaudineau, Arthur
TI  - Haas' theorem revisited
JO  - Épijournal de Géométrie Algébrique
PY  - 2017
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.2030/
DO  - 10.46298/epiga.2017.volume1.2030
LA  - en
ID  - 10_46298_epiga_2017_volume1_2030
ER  - 
%0 Journal Article
%A Bertrand, Benoît
%A Brugallé, Erwan
%A Renaudineau, Arthur
%T Haas' theorem revisited
%J Épijournal de Géométrie Algébrique
%D 2017
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.2030/
%R 10.46298/epiga.2017.volume1.2030
%G en
%F 10_46298_epiga_2017_volume1_2030
Bertrand, Benoît; Brugallé, Erwan; Renaudineau, Arthur. Haas' theorem revisited. Épijournal de Géométrie Algébrique, Tome 1 (2017). doi: 10.46298/epiga.2017.volume1.2030

Cité par Sources :