Conic bundles that are not birational to numerical Calabi–Yau pairs
Épijournal de Géométrie Algébrique, Tome 1 (2017)

Voir la notice de l'article provenant de la source Episciences

Let $X$ be a general conic bundle over the projective plane with branch curve of degree at least 19. We prove that there is no normal projective variety $Y$ that is birational to $X$ and such that some multiple of its anticanonical divisor is effective. We also give such examples for 2-dimensional conic bundles defined over a number field.
@article{10_46298_epiga_2017_volume1_1518,
     author = {Koll\'ar, J\'anos},
     title = {Conic bundles that are not birational to numerical {Calabi{\textendash}Yau} pairs},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {1},
     year = {2017},
     doi = {10.46298/epiga.2017.volume1.1518},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.1518/}
}
TY  - JOUR
AU  - Kollár, János
TI  - Conic bundles that are not birational to numerical Calabi–Yau pairs
JO  - Épijournal de Géométrie Algébrique
PY  - 2017
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.1518/
DO  - 10.46298/epiga.2017.volume1.1518
LA  - en
ID  - 10_46298_epiga_2017_volume1_1518
ER  - 
%0 Journal Article
%A Kollár, János
%T Conic bundles that are not birational to numerical Calabi–Yau pairs
%J Épijournal de Géométrie Algébrique
%D 2017
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.1518/
%R 10.46298/epiga.2017.volume1.1518
%G en
%F 10_46298_epiga_2017_volume1_1518
Kollár, János. Conic bundles that are not birational to numerical Calabi–Yau pairs. Épijournal de Géométrie Algébrique, Tome 1 (2017). doi: 10.46298/epiga.2017.volume1.1518

Cité par Sources :