Conic bundles that are not birational to numerical Calabi–Yau pairs
Épijournal de Géométrie Algébrique, Tome 1 (2017)
Voir la notice de l'article provenant de la source Episciences
Let $X$ be a general conic bundle over the projective plane with branch curve of degree at least 19. We prove that there is no normal projective variety $Y$ that is birational to $X$ and such that some multiple of its anticanonical divisor is effective. We also give such examples for 2-dimensional conic bundles defined over a number field.
@article{10_46298_epiga_2017_volume1_1518,
author = {Koll\'ar, J\'anos},
title = {Conic bundles that are not birational to numerical {Calabi{\textendash}Yau} pairs},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {1},
year = {2017},
doi = {10.46298/epiga.2017.volume1.1518},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.1518/}
}
TY - JOUR AU - Kollár, János TI - Conic bundles that are not birational to numerical Calabi–Yau pairs JO - Épijournal de Géométrie Algébrique PY - 2017 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.1518/ DO - 10.46298/epiga.2017.volume1.1518 LA - en ID - 10_46298_epiga_2017_volume1_1518 ER -
%0 Journal Article %A Kollár, János %T Conic bundles that are not birational to numerical Calabi–Yau pairs %J Épijournal de Géométrie Algébrique %D 2017 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2017.volume1.1518/ %R 10.46298/epiga.2017.volume1.1518 %G en %F 10_46298_epiga_2017_volume1_1518
Kollár, János. Conic bundles that are not birational to numerical Calabi–Yau pairs. Épijournal de Géométrie Algébrique, Tome 1 (2017). doi: 10.46298/epiga.2017.volume1.1518
Cité par Sources :