Representing polynomial of ST-CONNECTIVITY
Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 2
Cet article a éte moissonné depuis la source Episciences
We show that the coefficients of the representing polynomial of any monotone Boolean function are the values of the M\"obius function of an atomistic lattice related to this function. Using this we determine the representing polynomial of any Boolean function corresponding to a ST-CONNECTIVITY problem in acyclic quivers (directed acyclic multigraphs). Only monomials corresponding to unions of paths have non-zero coefficients which are $(-1)^D$ where $D$ is an easily computable function of the quiver corresponding to the monomial (it is the number of plane regions in the case of planar graphs). We determine that the number of monomials with non-zero coefficients for the two-dimensional $n \times n$ grid connectivity problem is $2^{\Omega(n^2)}$.
@article{DMTCS_2024_25_2_a17,
author = {Iraids, J\={a}nis and Smotrovs, Juris},
title = {Representing polynomial of {ST-CONNECTIVITY}},
journal = {Discrete mathematics & theoretical computer science},
year = {2023-2024},
volume = {25},
number = {2},
doi = {10.46298/dmtcs.9934},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9934/}
}
TY - JOUR AU - Iraids, Jānis AU - Smotrovs, Juris TI - Representing polynomial of ST-CONNECTIVITY JO - Discrete mathematics & theoretical computer science PY - 2023-2024 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9934/ DO - 10.46298/dmtcs.9934 LA - en ID - DMTCS_2024_25_2_a17 ER -
Iraids, Jānis; Smotrovs, Juris. Representing polynomial of ST-CONNECTIVITY. Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 2. doi: 10.46298/dmtcs.9934
Cité par Sources :