A heuristic technique for decomposing multisets of non-negative integers according to the Minkowski sum
Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 2.

Voir la notice de l'article provenant de la source Episciences

We study the following problem. Given a multiset $M$ of non-negative integers, decide whether there exist and, in the positive case, compute two non-trivial multisets whose Minkowski sum is equal to $M$. The Minkowski sum of two multisets A and B is a multiset containing all possible sums of any element of A and any element of B. This problem was proved to be NP-complete when multisets are replaced by sets. This version of the problem is strictly related to the factorization of boolean polynomials that turns out to be NP-complete as well. When multisets are considered, the problem is equivalent to the factorization of polynomials with non-negative integer coefficients. The computational complexity of both these problems is still unknown. The main contribution of this paper is a heuristic technique for decomposing multisets of non-negative integers. Experimental results show that our heuristic decomposes multisets of hundreds of elements within seconds independently of the magnitude of numbers belonging to the multisets. Our heuristic can be used also for factoring polynomials in N[x]. We show that, when the degree of the polynomials gets larger, our technique is much faster than the state-of-the-art algorithms implemented in commercial software like Mathematica and MatLab.
DOI : 10.46298/dmtcs.9877
Classification : 68-XX
@article{DMTCS_2022_24_2_a6,
     author = {Margara, Luciano},
     title = {A heuristic technique for decomposing multisets of non-negative integers according to the {Minkowski} sum},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2022},
     doi = {10.46298/dmtcs.9877},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9877/}
}
TY  - JOUR
AU  - Margara, Luciano
TI  - A heuristic technique for decomposing multisets of non-negative integers according to the Minkowski sum
JO  - Discrete mathematics & theoretical computer science
PY  - 2022
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9877/
DO  - 10.46298/dmtcs.9877
LA  - en
ID  - DMTCS_2022_24_2_a6
ER  - 
%0 Journal Article
%A Margara, Luciano
%T A heuristic technique for decomposing multisets of non-negative integers according to the Minkowski sum
%J Discrete mathematics & theoretical computer science
%D 2022
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9877/
%R 10.46298/dmtcs.9877
%G en
%F DMTCS_2022_24_2_a6
Margara, Luciano. A heuristic technique for decomposing multisets of non-negative integers according to the Minkowski sum. Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 2. doi : 10.46298/dmtcs.9877. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9877/

Cité par Sources :