A characterization of rich c-partite (c > 7) tournaments without (c + 2)-cycles
Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 2.

Voir la notice de l'article provenant de la source Episciences

Let c be an integer. A c-partite tournament is an orientation of a complete c-partite graph. A c-partite tournament is rich if it is strong, and each partite set has at least two vertices. In 1996, Guo and Volkmann characterized the structure of all rich c-partite tournaments without (c + 1)-cycles, which solved a problem by Bondy. They also put forward a problem that what the structure of rich c-partite tournaments without (c + k)-cycles for some k>1 is. In this paper, we answer the question of Guo and Volkmann for k = 2.
DOI : 10.46298/dmtcs.9732
Classification : 05C20
@article{DMTCS_2024_25_2_a14,
     author = {Zhang, Jie and Wang, Zhilan and Yan, Jin},
     title = {A characterization of rich c-partite (c > 7) tournaments without (c + 2)-cycles},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023-2024},
     doi = {10.46298/dmtcs.9732},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9732/}
}
TY  - JOUR
AU  - Zhang, Jie
AU  - Wang, Zhilan
AU  - Yan, Jin
TI  - A characterization of rich c-partite (c > 7) tournaments without (c + 2)-cycles
JO  - Discrete mathematics & theoretical computer science
PY  - 2023-2024
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9732/
DO  - 10.46298/dmtcs.9732
LA  - en
ID  - DMTCS_2024_25_2_a14
ER  - 
%0 Journal Article
%A Zhang, Jie
%A Wang, Zhilan
%A Yan, Jin
%T A characterization of rich c-partite (c > 7) tournaments without (c + 2)-cycles
%J Discrete mathematics & theoretical computer science
%D 2023-2024
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9732/
%R 10.46298/dmtcs.9732
%G en
%F DMTCS_2024_25_2_a14
Zhang, Jie; Wang, Zhilan; Yan, Jin. A characterization of rich c-partite (c > 7) tournaments without (c + 2)-cycles. Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 2. doi : 10.46298/dmtcs.9732. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9732/

Cité par Sources :