Bivariate Chromatic Polynomials of Mixed Graphs
Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 2.

Voir la notice de l'article provenant de la source Episciences

The bivariate chromatic polynomial $\chi_G(x,y)$ of a graph $G = (V, E)$, introduced by Dohmen-P\"{o}nitz-Tittmann (2003), counts all $x$-colorings of $G$ such that adjacent vertices get different colors if they are $\le y$. We extend this notion to mixed graphs, which have both directed and undirected edges. Our main result is a decomposition formula which expresses $\chi_G(x,y)$ as a sum of bivariate order polynomials (Beck-Farahmand-Karunaratne-Zuniga Ruiz 2020), and a combinatorial reciprocity theorem for $\chi_G(x,y)$.
DOI : 10.46298/dmtcs.9595
Classification : 05C31
@article{DMTCS_2024_25_2_a0,
     author = {Beck, Matthias and Kolhatkar, Sampada},
     title = {Bivariate {Chromatic} {Polynomials} of {Mixed} {Graphs}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023-2024},
     doi = {10.46298/dmtcs.9595},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9595/}
}
TY  - JOUR
AU  - Beck, Matthias
AU  - Kolhatkar, Sampada
TI  - Bivariate Chromatic Polynomials of Mixed Graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2023-2024
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9595/
DO  - 10.46298/dmtcs.9595
LA  - en
ID  - DMTCS_2024_25_2_a0
ER  - 
%0 Journal Article
%A Beck, Matthias
%A Kolhatkar, Sampada
%T Bivariate Chromatic Polynomials of Mixed Graphs
%J Discrete mathematics & theoretical computer science
%D 2023-2024
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9595/
%R 10.46298/dmtcs.9595
%G en
%F DMTCS_2024_25_2_a0
Beck, Matthias; Kolhatkar, Sampada. Bivariate Chromatic Polynomials of Mixed Graphs. Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 2. doi : 10.46298/dmtcs.9595. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9595/

Cité par Sources :