Proximity, remoteness and maximum degree in graphs
Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 2.

Voir la notice de l'article provenant de la source Episciences

The average distance of a vertex $v$ of a connected graph $G$ is the arithmetic mean of the distances from $v$ to all other vertices of $G$. The proximity $\pi(G)$ and the remoteness $\rho(G)$ of $G$ are the minimum and the maximum of the average distances of the vertices of $G$, respectively. In this paper, we give upper bounds on the remoteness and proximity for graphs of given order, minimum degree and maximum degree. Our bounds are sharp apart from an additive constant.
DOI : 10.46298/dmtcs.9432
Classification : 05C12, 05C35, 05C38
@article{DMTCS_2022_24_2_a8,
     author = {Dankelmann, Peter and Mafunda, Sonwabile and Mallu, Sufiyan},
     title = {Proximity, remoteness and maximum degree in graphs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2022},
     doi = {10.46298/dmtcs.9432},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9432/}
}
TY  - JOUR
AU  - Dankelmann, Peter
AU  - Mafunda, Sonwabile
AU  - Mallu, Sufiyan
TI  - Proximity, remoteness and maximum degree in graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2022
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9432/
DO  - 10.46298/dmtcs.9432
LA  - en
ID  - DMTCS_2022_24_2_a8
ER  - 
%0 Journal Article
%A Dankelmann, Peter
%A Mafunda, Sonwabile
%A Mallu, Sufiyan
%T Proximity, remoteness and maximum degree in graphs
%J Discrete mathematics & theoretical computer science
%D 2022
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9432/
%R 10.46298/dmtcs.9432
%G en
%F DMTCS_2022_24_2_a8
Dankelmann, Peter; Mafunda, Sonwabile; Mallu, Sufiyan. Proximity, remoteness and maximum degree in graphs. Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 2. doi : 10.46298/dmtcs.9432. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9432/

Cité par Sources :