Voir la notice de l'article provenant de la source Episciences
@article{DMTCS_2024_25_2_a8, author = {Louchard, Guy and Schachinger, Werner and Ward, Mark Daniel}, title = {The number of distinct adjacent pairs in geometrically distributed words: a probabilistic and combinatorial analysis}, journal = {Discrete mathematics & theoretical computer science}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2023-2024}, doi = {10.46298/dmtcs.9293}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9293/} }
TY - JOUR AU - Louchard, Guy AU - Schachinger, Werner AU - Ward, Mark Daniel TI - The number of distinct adjacent pairs in geometrically distributed words: a probabilistic and combinatorial analysis JO - Discrete mathematics & theoretical computer science PY - 2023-2024 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9293/ DO - 10.46298/dmtcs.9293 LA - en ID - DMTCS_2024_25_2_a8 ER -
%0 Journal Article %A Louchard, Guy %A Schachinger, Werner %A Ward, Mark Daniel %T The number of distinct adjacent pairs in geometrically distributed words: a probabilistic and combinatorial analysis %J Discrete mathematics & theoretical computer science %D 2023-2024 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9293/ %R 10.46298/dmtcs.9293 %G en %F DMTCS_2024_25_2_a8
Louchard, Guy; Schachinger, Werner; Ward, Mark Daniel. The number of distinct adjacent pairs in geometrically distributed words: a probabilistic and combinatorial analysis. Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 2. doi : 10.46298/dmtcs.9293. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9293/
Cité par Sources :