Dissecting power of intersection of two context-free languages
Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 2.

Voir la notice de l'article provenant de la source Episciences

We say that a language $L$ is \emph{constantly growing} if there is a constant $c$ such that for every word $u\in L$ there is a word $v\in L$ with $\vert u\vert<\vert v\vert\leq c+\vert u\vert$. We say that a language $L$ is \emph{geometrically growing} if there is a constant $c$ such that for every word $u\in L$ there is a word $v\in L$ with $\vert u\vert<\vert v\vert\leq c\vert u\vert$. Given two infinite languages $L_1,L_2$, we say that $L_1$ \emph{dissects} $L_2$ if $\vert L_2\setminus L_1\vert=\infty$ and $\vert L_1\cap L_2\vert=\infty$. In 2013, it was shown that for every constantly growing language $L$ there is a regular language $R$ such that $R$ dissects $L$. In the current article we show how to dissect a geometrically growing language by a homomorphic image of intersection of two context-free languages. Consider three alphabets $\Gamma$, $\Sigma$, and $\Theta$ such that $\vert \Sigma\vert=1$ and $\vert \Theta\vert=4$. We prove that there are context-free languages $M_1,M_2\subseteq \Theta^*$, an erasing alphabetical homomorphism $\pi:\Theta^*\rightarrow \Sigma^*$, and a nonerasing alphabetical homomorphism $\varphi : \Gamma^*\rightarrow \Sigma^*$ such that: If $L\subseteq \Gamma^*$ is a geometrically growing language then there is a regular language $R\subseteq \Theta^*$ such that $\varphi^{-1}\left(\pi\left(R\cap M_1\cap M_2\right)\right)$ dissects the language $L$.
DOI : 10.46298/dmtcs.9063
Classification : 68Nxx
@article{DMTCS_2024_25_2_a6,
     author = {Rukavicka, Josef},
     title = {Dissecting power of intersection of two context-free languages},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023-2024},
     doi = {10.46298/dmtcs.9063},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9063/}
}
TY  - JOUR
AU  - Rukavicka, Josef
TI  - Dissecting power of intersection of two context-free languages
JO  - Discrete mathematics & theoretical computer science
PY  - 2023-2024
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9063/
DO  - 10.46298/dmtcs.9063
LA  - en
ID  - DMTCS_2024_25_2_a6
ER  - 
%0 Journal Article
%A Rukavicka, Josef
%T Dissecting power of intersection of two context-free languages
%J Discrete mathematics & theoretical computer science
%D 2023-2024
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9063/
%R 10.46298/dmtcs.9063
%G en
%F DMTCS_2024_25_2_a6
Rukavicka, Josef. Dissecting power of intersection of two context-free languages. Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 2. doi : 10.46298/dmtcs.9063. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.9063/

Cité par Sources :