Improved product structure for graphs on surfaces
Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 2.

Voir la notice de l'article provenant de la source Episciences

Dujmovi\'c, Joret, Micek, Morin, Ueckerdt and Wood [J. ACM 2020] proved that for every graph $G$ with Euler genus $g$ there is a graph $H$ with treewidth at most 4 and a path $P$ such that $G\subseteq H \boxtimes P \boxtimes K_{\max\{2g,3\}}$. We improve this result by replacing "4" by "3" and with $H$ planar. We in fact prove a more general result in terms of so-called framed graphs. This implies that every $(g,d)$-map graph is contained in $ H \boxtimes P\boxtimes K_\ell$, for some planar graph $H$ with treewidth $3$, where $\ell=\max\{2g\lfloor \frac{d}{2} \rfloor,d+3\lfloor\frac{d}{2}\rfloor-3\}$. It also implies that every $(g,1)$-planar graph (that is, graphs that can be drawn in a surface of Euler genus $g$ with at most one crossing per edge) is contained in $H\boxtimes P\boxtimes K_{\max\{4g,7\}}$, for some planar graph $H$ with treewidth $3$.
DOI : 10.46298/dmtcs.8877
Classification : 05C60, 05C76
@article{DMTCS_2022_24_2_a3,
     author = {Distel, Marc and Hickingbotham, Robert and Huynh, Tony and Wood, David R.},
     title = {Improved product structure for graphs on surfaces},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2022},
     doi = {10.46298/dmtcs.8877},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.8877/}
}
TY  - JOUR
AU  - Distel, Marc
AU  - Hickingbotham, Robert
AU  - Huynh, Tony
AU  - Wood, David R.
TI  - Improved product structure for graphs on surfaces
JO  - Discrete mathematics & theoretical computer science
PY  - 2022
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.8877/
DO  - 10.46298/dmtcs.8877
LA  - en
ID  - DMTCS_2022_24_2_a3
ER  - 
%0 Journal Article
%A Distel, Marc
%A Hickingbotham, Robert
%A Huynh, Tony
%A Wood, David R.
%T Improved product structure for graphs on surfaces
%J Discrete mathematics & theoretical computer science
%D 2022
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.8877/
%R 10.46298/dmtcs.8877
%G en
%F DMTCS_2022_24_2_a3
Distel, Marc; Hickingbotham, Robert; Huynh, Tony; Wood, David R. Improved product structure for graphs on surfaces. Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 2. doi : 10.46298/dmtcs.8877. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.8877/

Cité par Sources :