Extremal problems of double stars
Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 2.

Voir la notice de l'article provenant de la source Episciences

In a generalized Tur\'an problem, two graphs $H$ and $F$ are given and the question is the maximum number of copies of $H$ in an $F$-free graph of order $n$. In this paper, we study the number of double stars $S_{k,l}$ in triangle-free graphs. We also study an opposite version of this question: what is the maximum number edges/triangles in graphs with double star type restrictions, which leads us to study two questions related to the extremal number of triangles or edges in graphs with degree-sum constraints over adjacent or non-adjacent vertices.
DOI : 10.46298/dmtcs.8499
Classification : 05C30, 05C35
@article{DMTCS_2022_24_2_a11,
     author = {Gy\H{o}ri, Ervin and Wang, Runze and Woolfson, Spencer},
     title = {Extremal problems of double stars},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2022},
     doi = {10.46298/dmtcs.8499},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.8499/}
}
TY  - JOUR
AU  - Győri, Ervin
AU  - Wang, Runze
AU  - Woolfson, Spencer
TI  - Extremal problems of double stars
JO  - Discrete mathematics & theoretical computer science
PY  - 2022
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.8499/
DO  - 10.46298/dmtcs.8499
LA  - en
ID  - DMTCS_2022_24_2_a11
ER  - 
%0 Journal Article
%A Győri, Ervin
%A Wang, Runze
%A Woolfson, Spencer
%T Extremal problems of double stars
%J Discrete mathematics & theoretical computer science
%D 2022
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.8499/
%R 10.46298/dmtcs.8499
%G en
%F DMTCS_2022_24_2_a11
Győri, Ervin; Wang, Runze; Woolfson, Spencer. Extremal problems of double stars. Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 2. doi : 10.46298/dmtcs.8499. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.8499/

Cité par Sources :