On the Connectivity of Token Graphs of Trees
Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 1.

Voir la notice de l'article provenant de la source Episciences

Let $k$ and $n$ be integers such that $1\leq k \leq n-1$, and let $G$ be a simple graph of order $n$. The $k$-token graph $F_k(G)$ of $G$ is the graph whose vertices are the $k$-subsets of $V(G)$, where two vertices are adjacent in $F_k(G)$ whenever their symmetric difference is an edge of $G$. In this paper we show that if $G$ is a tree, then the connectivity of $F_k(G)$ is equal to the minimum degree of $F_k(G)$.
DOI : 10.46298/dmtcs.7538
Classification : 05C05, 05C07, 05C40
@article{DMTCS_2022_24_1_a8,
     author = {Fabila-Monroy, Ruy and Lea\~nos, Jes\'us and Trujillo-Negrete, Ana Laura},
     title = {On the {Connectivity} of {Token} {Graphs} of {Trees}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     doi = {10.46298/dmtcs.7538},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7538/}
}
TY  - JOUR
AU  - Fabila-Monroy, Ruy
AU  - Leaños, Jesús
AU  - Trujillo-Negrete, Ana Laura
TI  - On the Connectivity of Token Graphs of Trees
JO  - Discrete mathematics & theoretical computer science
PY  - 2022
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7538/
DO  - 10.46298/dmtcs.7538
LA  - en
ID  - DMTCS_2022_24_1_a8
ER  - 
%0 Journal Article
%A Fabila-Monroy, Ruy
%A Leaños, Jesús
%A Trujillo-Negrete, Ana Laura
%T On the Connectivity of Token Graphs of Trees
%J Discrete mathematics & theoretical computer science
%D 2022
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7538/
%R 10.46298/dmtcs.7538
%G en
%F DMTCS_2022_24_1_a8
Fabila-Monroy, Ruy; Leaños, Jesús; Trujillo-Negrete, Ana Laura. On the Connectivity of Token Graphs of Trees. Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 1. doi : 10.46298/dmtcs.7538. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7538/

Cité par Sources :