On the inversion number of oriented graphs
Discrete mathematics & theoretical computer science, special issue in honour of Maurice Pouzet, Tome 23 (2021-2022) no. 2.

Voir la notice de l'article provenant de la source Episciences

Let $D$ be an oriented graph. The inversion of a set $X$ of vertices in $D$ consists in reversing the direction of all arcs with both ends in $X$. The inversion number of $D$, denoted by ${\rm inv}(D)$, is the minimum number of inversions needed to make $D$ acyclic. Denoting by $\tau(D)$, $\tau' (D)$, and $\nu(D)$ the cycle transversal number, the cycle arc-transversal number and the cycle packing number of $D$ respectively, one shows that ${\rm inv}(D) \leq \tau' (D)$, ${\rm inv}(D) \leq 2\tau(D)$ and there exists a function $g$ such that ${\rm inv}(D)\leq g(\nu(D))$. We conjecture that for any two oriented graphs $L$ and $R$, ${\rm inv}(L\rightarrow R) ={\rm inv}(L) +{\rm inv}(R)$ where $L\rightarrow R$ is the dijoin of $L$ and $R$. This would imply that the first two inequalities are tight. We prove this conjecture when ${\rm inv}(L)\leq 1$ and ${\rm inv}(R)\leq 2$ and when ${\rm inv}(L) ={\rm inv}(R)=2$ and $L$ and $R$ are strongly connected. We also show that the function $g$ of the third inequality satisfies $g(1)\leq 4$. We then consider the complexity of deciding whether ${\rm inv}(D)\leq k$ for a given oriented graph $D$. We show that it is NP-complete for $k=1$, which together with the above conjecture would imply that it is NP-complete for every $k$. This contrasts with a result of Belkhechine et al. which states that deciding whether ${\rm inv}(T)\leq k$ for a given tournament $T$ is polynomial-time solvable.
@article{DMTCS_2022_23_2_a7,
     author = {Bang-Jensen, J{\o}rgen and da Silva, Jonas Costa Ferreira and Havet, Fr\'ed\'eric},
     title = {On the inversion number of oriented graphs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2021-2022},
     doi = {10.46298/dmtcs.7474},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7474/}
}
TY  - JOUR
AU  - Bang-Jensen, Jørgen
AU  - da Silva, Jonas Costa Ferreira
AU  - Havet, Frédéric
TI  - On the inversion number of oriented graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2021-2022
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7474/
DO  - 10.46298/dmtcs.7474
LA  - en
ID  - DMTCS_2022_23_2_a7
ER  - 
%0 Journal Article
%A Bang-Jensen, Jørgen
%A da Silva, Jonas Costa Ferreira
%A Havet, Frédéric
%T On the inversion number of oriented graphs
%J Discrete mathematics & theoretical computer science
%D 2021-2022
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7474/
%R 10.46298/dmtcs.7474
%G en
%F DMTCS_2022_23_2_a7
Bang-Jensen, Jørgen; da Silva, Jonas Costa Ferreira; Havet, Frédéric. On the inversion number of oriented graphs. Discrete mathematics & theoretical computer science, special issue in honour of Maurice Pouzet, Tome 23 (2021-2022) no. 2. doi : 10.46298/dmtcs.7474. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7474/

Cité par Sources :