Universal Horn Sentences and the Joint Embedding Property
Discrete mathematics & theoretical computer science, special issue in honour of Maurice Pouzet, Tome 23 (2021-2022) no. 2.

Voir la notice de l'article provenant de la source Episciences

The finite models of a universal sentence $\Phi$ in a finite relational signature are the age of a structure if and only if $\Phi$ has the joint embedding property. We prove that the computational problem whether a given universal sentence $\Phi$ has the joint embedding property is undecidable, even if $\Phi$ is additionally Horn and the signature of $\Phi$ only contains relation symbols of arity at most two.
DOI : 10.46298/dmtcs.7435
Classification : 03C13, 03D35, 08A70, 68Q25
@article{DMTCS_2022_23_2_a3,
     author = {Bodirsky, Manuel and Rydval, Jakub and Schrottenloher, Andr\'e},
     title = {Universal {Horn} {Sentences} and the {Joint} {Embedding} {Property}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2021-2022},
     doi = {10.46298/dmtcs.7435},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7435/}
}
TY  - JOUR
AU  - Bodirsky, Manuel
AU  - Rydval, Jakub
AU  - Schrottenloher, André
TI  - Universal Horn Sentences and the Joint Embedding Property
JO  - Discrete mathematics & theoretical computer science
PY  - 2021-2022
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7435/
DO  - 10.46298/dmtcs.7435
LA  - en
ID  - DMTCS_2022_23_2_a3
ER  - 
%0 Journal Article
%A Bodirsky, Manuel
%A Rydval, Jakub
%A Schrottenloher, André
%T Universal Horn Sentences and the Joint Embedding Property
%J Discrete mathematics & theoretical computer science
%D 2021-2022
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7435/
%R 10.46298/dmtcs.7435
%G en
%F DMTCS_2022_23_2_a3
Bodirsky, Manuel; Rydval, Jakub; Schrottenloher, André. Universal Horn Sentences and the Joint Embedding Property. Discrete mathematics & theoretical computer science, special issue in honour of Maurice Pouzet, Tome 23 (2021-2022) no. 2. doi : 10.46298/dmtcs.7435. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7435/

Cité par Sources :