Bijective proofs for Eulerian numbers of types B and D
Discrete mathematics & theoretical computer science, special issue in honour of Maurice Pouzet, Tome 23 (2021-2022) no. 2.

Voir la notice de l'article provenant de la source Episciences

Let $\Bigl\langle\matrix{n\cr k}\Bigr\rangle$, $\Bigl\langle\matrix{B_n\cr k}\Bigr\rangle$, and $\Bigl\langle\matrix{D_n\cr k}\Bigr\rangle$ be the Eulerian numbers in the types A, B, and D, respectively -- that is, the number of permutations of n elements with $k$ descents, the number of signed permutations (of $n$ elements) with $k$ type B descents, the number of even signed permutations (of $n$ elements) with $k$ type D descents. Let $S_n(t) = \sum_{k = 0}^{n-1} \Bigl\langle\matrix{n\cr k}\Bigr\rangle t^k$, $B_n(t) = \sum_{k = 0}^n \Bigl\langle\matrix{B_n\cr k}\Bigr\rangle t^k$, and $D_n(t) = \sum_{k = 0}^n \Bigl\langle\matrix{D_n\cr k}\Bigr\rangle t^k$. We give bijective proofs of the identity $$B_n(t^2) = (1 + t)^{n+1}S_n(t) - 2^n tS_n(t^2)$$ and of Stembridge's identity $$D_n(t) = B_n(t) - n2^{n-1}tS_{n-1}(t).$$ These bijective proofs rely on a representation of signed permutations as paths. Using this representation we also establish a bijective correspondence between even signed permutations and pairs $(w, E)$ with $([n], E)$ a threshold graph and $w$ a degree ordering of $([n], E)$, which we use to obtain bijective proofs of enumerative results for threshold graphs.
@article{DMTCS_2022_23_2_a8,
     author = {Santocanale, Luigi},
     title = {Bijective proofs for {Eulerian} numbers of types {B} and {D}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2021-2022},
     doi = {10.46298/dmtcs.7413},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7413/}
}
TY  - JOUR
AU  - Santocanale, Luigi
TI  - Bijective proofs for Eulerian numbers of types B and D
JO  - Discrete mathematics & theoretical computer science
PY  - 2021-2022
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7413/
DO  - 10.46298/dmtcs.7413
LA  - en
ID  - DMTCS_2022_23_2_a8
ER  - 
%0 Journal Article
%A Santocanale, Luigi
%T Bijective proofs for Eulerian numbers of types B and D
%J Discrete mathematics & theoretical computer science
%D 2021-2022
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7413/
%R 10.46298/dmtcs.7413
%G en
%F DMTCS_2022_23_2_a8
Santocanale, Luigi. Bijective proofs for Eulerian numbers of types B and D. Discrete mathematics & theoretical computer science, special issue in honour of Maurice Pouzet, Tome 23 (2021-2022) no. 2. doi : 10.46298/dmtcs.7413. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7413/

Cité par Sources :