Positional Marked Patterns in Permutations
Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 1.

Voir la notice de l'article provenant de la source Episciences

We define and study positional marked patterns, permutations $\tau$ where one of elements in $\tau$ is underlined. Given a permutation $\sigma$, we say that $\sigma$ has a $\tau$-match at position $i$ if $\tau$ occurs in $\sigma$ in such a way that $\sigma_i$ plays the role of the underlined element in the occurrence. We let $pmp_\tau(\sigma)$ denote the number of positions $i$ which $\sigma$ has a $\tau$-match. This defines a new class of statistics on permutations, where we study such statistics and prove a number of results. In particular, we prove that two positional marked patterns $1\underline{2}3$ and $1\underline{3}2$ give rise to two statistics that have the same distribution. The equidistibution phenomenon also occurs in other several collections of patterns like $\left \{1\underline{2}3 , 1\underline{3}2 \right \}$, and $\left \{ 1\underline234, 1\underline243, \underline2134, \underline2 1 4 3 \right \}$, as well as two positional marked patterns of any length $n$: $\left \{ 1\underline 2\tau , \underline 21\tau \right \}$.
DOI : 10.46298/dmtcs.7171
Classification : 05A05
@article{DMTCS_2022_24_1_a22,
     author = {Thamrongpairoj, Sittipong and Remmel, Jeffrey B.},
     title = {Positional {Marked} {Patterns} in {Permutations}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     doi = {10.46298/dmtcs.7171},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7171/}
}
TY  - JOUR
AU  - Thamrongpairoj, Sittipong
AU  - Remmel, Jeffrey B.
TI  - Positional Marked Patterns in Permutations
JO  - Discrete mathematics & theoretical computer science
PY  - 2022
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7171/
DO  - 10.46298/dmtcs.7171
LA  - en
ID  - DMTCS_2022_24_1_a22
ER  - 
%0 Journal Article
%A Thamrongpairoj, Sittipong
%A Remmel, Jeffrey B.
%T Positional Marked Patterns in Permutations
%J Discrete mathematics & theoretical computer science
%D 2022
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7171/
%R 10.46298/dmtcs.7171
%G en
%F DMTCS_2022_24_1_a22
Thamrongpairoj, Sittipong; Remmel, Jeffrey B. Positional Marked Patterns in Permutations. Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 1. doi : 10.46298/dmtcs.7171. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7171/

Cité par Sources :