Domination in Kn\"odel Graphs
Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 1.

Voir la notice de l'article provenant de la source Episciences

Given a graph and an integer $k$, it is an NP-complete problem to decide whether there is a dominating set of size at most $k$. In this paper we study this problem for the Kn\"odel Graph on $n$ vertices using elementary number theory techniques. In particular, we show an explicit upper bound for the domination number of the Kn\"odel Graph on $n$ vertices any time that we can find a prime number $p$ dividing $n$ for which $2$ is a primitive root.
DOI : 10.46298/dmtcs.7158
Classification : 05C69
@article{DMTCS_2022_24_1_a15,
     author = {Racicot, Jesse and Rosso, Giovanni},
     title = {Domination in {Kn\"odel} {Graphs}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     doi = {10.46298/dmtcs.7158},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7158/}
}
TY  - JOUR
AU  - Racicot, Jesse
AU  - Rosso, Giovanni
TI  - Domination in Kn\"odel Graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2022
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7158/
DO  - 10.46298/dmtcs.7158
LA  - en
ID  - DMTCS_2022_24_1_a15
ER  - 
%0 Journal Article
%A Racicot, Jesse
%A Rosso, Giovanni
%T Domination in Kn\"odel Graphs
%J Discrete mathematics & theoretical computer science
%D 2022
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7158/
%R 10.46298/dmtcs.7158
%G en
%F DMTCS_2022_24_1_a15
Racicot, Jesse; Rosso, Giovanni. Domination in Kn\"odel Graphs. Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 1. doi : 10.46298/dmtcs.7158. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7158/

Cité par Sources :