The Elser nuclei sum revisited
Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 1.

Voir la notice de l'article provenant de la source Episciences

Fix a finite undirected graph $\Gamma$ and a vertex $v$ of $\Gamma$. Let $E$ be the set of edges of $\Gamma$. We call a subset $F$ of $E$ pandemic if each edge of $\Gamma$ has at least one endpoint that can be connected to $v$ by an $F$-path (i.e., a path using edges from $F$ only). In 1984, Elser showed that the sum of $\left(-1\right)^{\left| F\right|}$ over all pandemic subsets $F$ of $E$ is $0$ if $E\neq \varnothing$. We give a simple proof of this result via a sign-reversing involution, and discuss variants, generalizations and refinements, revealing connections to abstract convexity (the notion of an antimatroid) and discrete Morse theory.
DOI : 10.46298/dmtcs.7012
Classification : 05E45
@article{DMTCS_2021_23_1_a9,
     author = {Grinberg, Darij},
     title = {The {Elser} nuclei sum revisited},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021-2022},
     doi = {10.46298/dmtcs.7012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7012/}
}
TY  - JOUR
AU  - Grinberg, Darij
TI  - The Elser nuclei sum revisited
JO  - Discrete mathematics & theoretical computer science
PY  - 2021-2022
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7012/
DO  - 10.46298/dmtcs.7012
LA  - en
ID  - DMTCS_2021_23_1_a9
ER  - 
%0 Journal Article
%A Grinberg, Darij
%T The Elser nuclei sum revisited
%J Discrete mathematics & theoretical computer science
%D 2021-2022
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7012/
%R 10.46298/dmtcs.7012
%G en
%F DMTCS_2021_23_1_a9
Grinberg, Darij. The Elser nuclei sum revisited. Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 1. doi : 10.46298/dmtcs.7012. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.7012/

Cité par Sources :