Wiener index in graphs with given minimum degree and maximum degree
Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 1.

Voir la notice de l'article provenant de la source Episciences

Let $G$ be a connected graph of order $n$.The Wiener index $W(G)$ of $G$ is the sum of the distances between all unordered pairs of vertices of $G$. In this paper we show that the well-known upper bound $\big( \frac{n}{\delta+1}+2\big) {n \choose 2}$ on the Wiener index of a graph of order $n$ and minimum degree $\delta$ [M. Kouider, P. Winkler, Mean distance and minimum degree. J. Graph Theory 25 no. 1 (1997)] can be improved significantly if the graph contains also a vertex of large degree. Specifically, we give the asymptotically sharp bound $W(G) \leq {n-\Delta+\delta \choose 2} \frac{n+2\Delta}{\delta+1}+ 2n(n-1)$ on the Wiener index of a graph $G$ of order $n$, minimum degree $\delta$ and maximum degree $\Delta$. We prove a similar result for triangle-free graphs, and we determine a bound on the Wiener index of $C_4$-free graphs of given order, minimum and maximum degree and show that it is, in some sense, best possible.
DOI : 10.46298/dmtcs.6956
Classification : 05C07, 05C09, 05C12, 05C35, 05C92, 92E10
@article{DMTCS_2021_23_1_a12,
     author = {Dankelmann, Peter and Alochukwu, Alex},
     title = {Wiener index in graphs with given minimum degree and maximum degree},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021-2022},
     doi = {10.46298/dmtcs.6956},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6956/}
}
TY  - JOUR
AU  - Dankelmann, Peter
AU  - Alochukwu, Alex
TI  - Wiener index in graphs with given minimum degree and maximum degree
JO  - Discrete mathematics & theoretical computer science
PY  - 2021-2022
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6956/
DO  - 10.46298/dmtcs.6956
LA  - en
ID  - DMTCS_2021_23_1_a12
ER  - 
%0 Journal Article
%A Dankelmann, Peter
%A Alochukwu, Alex
%T Wiener index in graphs with given minimum degree and maximum degree
%J Discrete mathematics & theoretical computer science
%D 2021-2022
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6956/
%R 10.46298/dmtcs.6956
%G en
%F DMTCS_2021_23_1_a12
Dankelmann, Peter; Alochukwu, Alex. Wiener index in graphs with given minimum degree and maximum degree. Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 1. doi : 10.46298/dmtcs.6956. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6956/

Cité par Sources :