Polymorphism-homogeneity and universal algebraic geometry
Discrete mathematics & theoretical computer science, special issue in honour of Maurice Pouzet, Tome 23 (2021-2022) no. 2.

Voir la notice de l'article provenant de la source Episciences

We assign a relational structure to any finite algebra in a canonical way, using solution sets of equations, and we prove that this relational structure is polymorphism-homogeneous if and only if the algebra itself is polymorphism-homogeneous. We show that polymorphism-homogeneity is also equivalent to the property that algebraic sets (i.e., solution sets of systems of equations) are exactly those sets of tuples that are closed under the centralizer clone of the algebra. Furthermore, we prove that the aforementioned properties hold if and only if the algebra is injective in the category of its finite subpowers. We also consider two additional conditions: a stronger variant for polymorphism-homogeneity and for injectivity, and we describe explicitly the finite semilattices, lattices, Abelian groups and monounary algebras satisfying any one of these three conditions.
DOI : 10.46298/dmtcs.6904
Classification : 08A35, 08A40
@article{DMTCS_2022_23_2_a2,
     author = {T\'oth, Endre and Waldhauser, Tam\'as},
     title = {Polymorphism-homogeneity and universal algebraic geometry},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2021-2022},
     doi = {10.46298/dmtcs.6904},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6904/}
}
TY  - JOUR
AU  - Tóth, Endre
AU  - Waldhauser, Tamás
TI  - Polymorphism-homogeneity and universal algebraic geometry
JO  - Discrete mathematics & theoretical computer science
PY  - 2021-2022
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6904/
DO  - 10.46298/dmtcs.6904
LA  - en
ID  - DMTCS_2022_23_2_a2
ER  - 
%0 Journal Article
%A Tóth, Endre
%A Waldhauser, Tamás
%T Polymorphism-homogeneity and universal algebraic geometry
%J Discrete mathematics & theoretical computer science
%D 2021-2022
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6904/
%R 10.46298/dmtcs.6904
%G en
%F DMTCS_2022_23_2_a2
Tóth, Endre; Waldhauser, Tamás. Polymorphism-homogeneity and universal algebraic geometry. Discrete mathematics & theoretical computer science, special issue in honour of Maurice Pouzet, Tome 23 (2021-2022) no. 2. doi : 10.46298/dmtcs.6904. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6904/

Cité par Sources :