The algebra of binary trees is affine complete
Discrete mathematics & theoretical computer science, special issue in honour of Maurice Pouzet, Tome 23 (2021-2022) no. 2.

Voir la notice de l'article provenant de la source Episciences

A function on an algebra is congruence preserving if, for any congruence, it maps pairs of congruent elements onto pairs of congruent elements. We show that on the algebra of binary trees whose leaves are labeled by letters of an alphabet containing at least three letters, a function is congruence preserving if and only if it is polynomial.
DOI : 10.46298/dmtcs.6890
Classification : 08A30, 08A40, 08B20
@article{DMTCS_2022_23_2_a0,
     author = {Arnold, Andre and Cegielski, Patrick and Grigorieff, Serge and Guessarian, Irene},
     title = {The algebra of binary trees is affine complete},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2021-2022},
     doi = {10.46298/dmtcs.6890},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6890/}
}
TY  - JOUR
AU  - Arnold, Andre
AU  - Cegielski, Patrick
AU  - Grigorieff, Serge
AU  - Guessarian, Irene
TI  - The algebra of binary trees is affine complete
JO  - Discrete mathematics & theoretical computer science
PY  - 2021-2022
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6890/
DO  - 10.46298/dmtcs.6890
LA  - en
ID  - DMTCS_2022_23_2_a0
ER  - 
%0 Journal Article
%A Arnold, Andre
%A Cegielski, Patrick
%A Grigorieff, Serge
%A Guessarian, Irene
%T The algebra of binary trees is affine complete
%J Discrete mathematics & theoretical computer science
%D 2021-2022
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6890/
%R 10.46298/dmtcs.6890
%G en
%F DMTCS_2022_23_2_a0
Arnold, Andre; Cegielski, Patrick; Grigorieff, Serge; Guessarian, Irene. The algebra of binary trees is affine complete. Discrete mathematics & theoretical computer science, special issue in honour of Maurice Pouzet, Tome 23 (2021-2022) no. 2. doi : 10.46298/dmtcs.6890. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6890/

Cité par Sources :