Non-monotone target sets for threshold values restricted to $0$, $1$, and the vertex degree
Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 1.

Voir la notice de l'article provenant de la source Episciences

We consider a non-monotone activation process $(X_t)_{t\in\{ 0,1,2,\ldots\}}$ on a graph $G$, where $X_0\subseteq V(G)$, $X_t=\{ u\in V(G):|N_G(u)\cap X_{t-1}|\geq \tau(u)\}$ for every positive integer $t$, and $\tau:V(G)\to \mathbb{Z}$ is a threshold function. The set $X_0$ is a so-called non-monotone target set for $(G,\tau)$ if there is some $t_0$ such that $X_t=V(G)$ for every $t\geq t_0$. Ben-Zwi, Hermelin, Lokshtanov, and Newman [Discrete Optimization 8 (2011) 87-96] asked whether a target set of minimum order can be determined efficiently if $G$ is a tree. We answer their question in the affirmative for threshold functions $\tau$ satisfying $\tau(u)\in \{ 0,1,d_G(u)\}$ for every vertex~$u$. For such restricted threshold functions, we give a characterization of target sets that allows to show that the minimum target set problem remains NP-hard for planar graphs of maximum degree $3$ but is efficiently solvable for graphs of bounded treewidth.
DOI : 10.46298/dmtcs.6844
Classification : 05C10, 05C99, 68Q17, 90C35
@article{DMTCS_2022_24_1_a17,
     author = {Baste, Julien and Ehard, Stefan and Rautenbach, Dieter},
     title = {Non-monotone target sets for threshold values restricted to $0$, $1$, and the vertex degree},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     doi = {10.46298/dmtcs.6844},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6844/}
}
TY  - JOUR
AU  - Baste, Julien
AU  - Ehard, Stefan
AU  - Rautenbach, Dieter
TI  - Non-monotone target sets for threshold values restricted to $0$, $1$, and the vertex degree
JO  - Discrete mathematics & theoretical computer science
PY  - 2022
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6844/
DO  - 10.46298/dmtcs.6844
LA  - en
ID  - DMTCS_2022_24_1_a17
ER  - 
%0 Journal Article
%A Baste, Julien
%A Ehard, Stefan
%A Rautenbach, Dieter
%T Non-monotone target sets for threshold values restricted to $0$, $1$, and the vertex degree
%J Discrete mathematics & theoretical computer science
%D 2022
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6844/
%R 10.46298/dmtcs.6844
%G en
%F DMTCS_2022_24_1_a17
Baste, Julien; Ehard, Stefan; Rautenbach, Dieter. Non-monotone target sets for threshold values restricted to $0$, $1$, and the vertex degree. Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 1. doi : 10.46298/dmtcs.6844. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6844/

Cité par Sources :