On the monophonic rank of a graph
Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 2.

Voir la notice de l'article provenant de la source Episciences

A set of vertices $S$ of a graph $G$ is {\em monophonically convex} if every induced path joining two vertices of $S$ is contained in $S$. The {\em monophonic convex hull of $S$}, $\langle S \rangle$, is the smallest monophonically convex set containing $S$. A set $S$ is {\em monophonic convexly independent} if $v \not\in \langle S - \{v\} \rangle$ for every $v \in S$. The {\em monophonic rank} of $G$ is the size of the largest monophonic convexly independent set of $G$. We present a characterization of the monophonic convexly independent sets. Using this result, we show how to determine the monophonic rank of graph classes like bipartite, cactus, triangle-free, and line graphs in polynomial time. Furthermore, we show that this parameter can computed in polynomial time for $1$-starlike graphs, i.e., for split graphs, and that its determination is $\NP$-complete for $k$-starlike graphs for any fixed $k \ge 2$, a subclass of chordal graphs. We also consider this problem on the graphs whose intersection graph of the maximal prime subgraphs is a tree.
DOI : 10.46298/dmtcs.6835
Classification : 05C10, 05C85, 68Q17
@article{DMTCS_2022_24_2_a2,
     author = {Dourado, Mitre C. and Ponciano, Vitor S. and da Silva, R\^omulo L. O.},
     title = {On the monophonic rank of a graph},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2022},
     doi = {10.46298/dmtcs.6835},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6835/}
}
TY  - JOUR
AU  - Dourado, Mitre C.
AU  - Ponciano, Vitor S.
AU  - da Silva, Rômulo L. O.
TI  - On the monophonic rank of a graph
JO  - Discrete mathematics & theoretical computer science
PY  - 2022
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6835/
DO  - 10.46298/dmtcs.6835
LA  - en
ID  - DMTCS_2022_24_2_a2
ER  - 
%0 Journal Article
%A Dourado, Mitre C.
%A Ponciano, Vitor S.
%A da Silva, Rômulo L. O.
%T On the monophonic rank of a graph
%J Discrete mathematics & theoretical computer science
%D 2022
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6835/
%R 10.46298/dmtcs.6835
%G en
%F DMTCS_2022_24_2_a2
Dourado, Mitre C.; Ponciano, Vitor S.; da Silva, Rômulo L. O. On the monophonic rank of a graph. Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 2. doi : 10.46298/dmtcs.6835. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6835/

Cité par Sources :