Constant Congestion Brambles
Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 1.

Voir la notice de l'article provenant de la source Episciences

A bramble in an undirected graph $G$ is a family of connected subgraphs of $G$ such that for every two subgraphs $H_1$ and $H_2$ in the bramble either $V(H_1) \cap V(H_2) \neq \emptyset$ or there is an edge of $G$ with one endpoint in $V(H_1)$ and the second endpoint in $V(H_2)$. The order of the bramble is the minimum size of a vertex set that intersects all elements of a bramble. Brambles are objects dual to treewidth: As shown by Seymour and Thomas, the maximum order of a bramble in an undirected graph $G$ equals one plus the treewidth of $G$. However, as shown by Grohe and Marx, brambles of high order may necessarily be of exponential size: In a constant-degree $n$-vertex expander a bramble of order $\Omega(n^{1/2+\delta})$ requires size exponential in $\Omega(n^{2\delta})$ for any fixed $\delta \in (0,\frac{1}{2}]$. On the other hand, the combination of results of Grohe and Marx and Chekuri and Chuzhoy shows that a graph of treewidth $k$ admits a bramble of order $\widetilde{\Omega}(k^{1/2})$ and size $\widetilde{\mathcal{O}}(k^{3/2})$. ($\widetilde{\Omega}$ and $\widetilde{\mathcal{O}}$ hide polylogarithmic factors and divisors, respectively.) In this note, we first sharpen the second bound by proving that every graph $G$ of treewidth at least $k$ contains a bramble of order $\widetilde{\Omega}(k^{1/2})$ and congestion $2$, i.e., every vertex of $G$ is contained in at most two elements of the bramble (thus the bramble is of size linear in its order). Second, we provide a tight upper bound for the lower bound of Grohe and Marx: For every $\delta \in (0,\frac{1}{2}]$, every graph $G$ of treewidth at least $k$ contains a bramble of order $\widetilde{\Omega}(k^{1/2+\delta})$ and size $2^{\widetilde{\mathcal{O}}(k^{2\delta})}$.
DOI : 10.46298/dmtcs.6699
Classification : 05C05, 05C40, 05C70, 05C75
@article{DMTCS_2022_24_1_a12,
     author = {Hatzel, Meike and Komosa, Pawel and Pilipczuk, Marcin and Sorge, Manuel},
     title = {Constant {Congestion} {Brambles}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     doi = {10.46298/dmtcs.6699},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6699/}
}
TY  - JOUR
AU  - Hatzel, Meike
AU  - Komosa, Pawel
AU  - Pilipczuk, Marcin
AU  - Sorge, Manuel
TI  - Constant Congestion Brambles
JO  - Discrete mathematics & theoretical computer science
PY  - 2022
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6699/
DO  - 10.46298/dmtcs.6699
LA  - en
ID  - DMTCS_2022_24_1_a12
ER  - 
%0 Journal Article
%A Hatzel, Meike
%A Komosa, Pawel
%A Pilipczuk, Marcin
%A Sorge, Manuel
%T Constant Congestion Brambles
%J Discrete mathematics & theoretical computer science
%D 2022
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6699/
%R 10.46298/dmtcs.6699
%G en
%F DMTCS_2022_24_1_a12
Hatzel, Meike; Komosa, Pawel; Pilipczuk, Marcin; Sorge, Manuel. Constant Congestion Brambles. Discrete mathematics & theoretical computer science, Tome 24 (2022) no. 1. doi : 10.46298/dmtcs.6699. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6699/

Cité par Sources :