On the number of vertices of each rank in phylogenetic trees and their generalizations
Discrete mathematics & theoretical computer science, Tome 18 (2015-2016) no. 3.

Voir la notice de l'article provenant de la source Episciences

We find surprisingly simple formulas for the limiting probability that the rank of a randomly selected vertex in a randomly selected phylogenetic tree or generalized phylogenetic tree is a given integer.
@article{DMTCS_2016_18_3_a6,
     author = {B\'ona, Mikl\'os},
     title = {On the number of vertices of each rank in phylogenetic trees and their generalizations},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2015-2016},
     doi = {10.46298/dmtcs.653},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.653/}
}
TY  - JOUR
AU  - Bóna, Miklós
TI  - On the number of vertices of each rank in phylogenetic trees and their generalizations
JO  - Discrete mathematics & theoretical computer science
PY  - 2015-2016
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.653/
DO  - 10.46298/dmtcs.653
LA  - en
ID  - DMTCS_2016_18_3_a6
ER  - 
%0 Journal Article
%A Bóna, Miklós
%T On the number of vertices of each rank in phylogenetic trees and their generalizations
%J Discrete mathematics & theoretical computer science
%D 2015-2016
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.653/
%R 10.46298/dmtcs.653
%G en
%F DMTCS_2016_18_3_a6
Bóna, Miklós. On the number of vertices of each rank in phylogenetic trees and their generalizations. Discrete mathematics & theoretical computer science, Tome 18 (2015-2016) no. 3. doi : 10.46298/dmtcs.653. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.653/

Cité par Sources :