Factoriality and the Pin-Reutenauer procedure
Discrete mathematics & theoretical computer science, Tome 18 (2015-2016) no. 3.

Voir la notice de l'article provenant de la source Episciences

We consider implicit signatures over finite semigroups determined by sets of pseudonatural numbers. We prove that, under relatively simple hypotheses on a pseudovariety V of semigroups, the finitely generated free algebra for the largest such signature is closed under taking factors within the free pro-V semigroup on the same set of generators. Furthermore, we show that the natural analogue of the Pin-Reutenauer descriptive procedure for the closure of a rational language in the free group with respect to the profinite topology holds for the pseudovariety of all finite semigroups. As an application, we establish that a pseudovariety enjoys this property if and only if it is full.
@article{DMTCS_2016_18_3_a2,
     author = {Almeida, J. and Costa, J. C. and Zeitoun, M.},
     title = {Factoriality and the {Pin-Reutenauer} procedure},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2015-2016},
     doi = {10.46298/dmtcs.650},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.650/}
}
TY  - JOUR
AU  - Almeida, J.
AU  - Costa, J. C.
AU  - Zeitoun, M.
TI  - Factoriality and the Pin-Reutenauer procedure
JO  - Discrete mathematics & theoretical computer science
PY  - 2015-2016
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.650/
DO  - 10.46298/dmtcs.650
LA  - en
ID  - DMTCS_2016_18_3_a2
ER  - 
%0 Journal Article
%A Almeida, J.
%A Costa, J. C.
%A Zeitoun, M.
%T Factoriality and the Pin-Reutenauer procedure
%J Discrete mathematics & theoretical computer science
%D 2015-2016
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.650/
%R 10.46298/dmtcs.650
%G en
%F DMTCS_2016_18_3_a2
Almeida, J.; Costa, J. C.; Zeitoun, M. Factoriality and the Pin-Reutenauer procedure. Discrete mathematics & theoretical computer science, Tome 18 (2015-2016) no. 3. doi : 10.46298/dmtcs.650. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.650/

Cité par Sources :