The treewidth of 2-section of hypergraphs
Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 3.

Voir la notice de l'article provenant de la source Episciences

Let $H=(V,F)$ be a simple hypergraph without loops. $H$ is called linear if $|f\cap g|\le 1$ for any $f,g\in F$ with $f\not=g$. The $2$-section of $H$, denoted by $[H]_2$, is a graph with $V([H]_2)=V$ and for any $ u,v\in V([H]_2)$, $uv\in E([H]_2)$ if and only if there is $ f\in F$ such that $u,v\in f$. The treewidth of a graph is an important invariant in structural and algorithmic graph theory. In this paper, we consider the treewidth of the $2$-section of a linear hypergraph. We will use the minimum degree, maximum degree, anti-rank and average rank of a linear hypergraph to determine the upper and lower bounds of the treewidth of its $2$-section. Since for any graph $G$, there is a linear hypergraph $H$ such that $[H]_2\cong G$, we provide a method to estimate the bound of treewidth of graph by the parameters of the hypergraph.
DOI : 10.46298/dmtcs.6499
Classification : 05C65
@article{DMTCS_2021_23_3_a13,
     author = {Liu, Ke and Lu, Mei},
     title = {The treewidth of 2-section of hypergraphs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2021-2022},
     doi = {10.46298/dmtcs.6499},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6499/}
}
TY  - JOUR
AU  - Liu, Ke
AU  - Lu, Mei
TI  - The treewidth of 2-section of hypergraphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2021-2022
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6499/
DO  - 10.46298/dmtcs.6499
LA  - en
ID  - DMTCS_2021_23_3_a13
ER  - 
%0 Journal Article
%A Liu, Ke
%A Lu, Mei
%T The treewidth of 2-section of hypergraphs
%J Discrete mathematics & theoretical computer science
%D 2021-2022
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6499/
%R 10.46298/dmtcs.6499
%G en
%F DMTCS_2021_23_3_a13
Liu, Ke; Lu, Mei. The treewidth of 2-section of hypergraphs. Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 3. doi : 10.46298/dmtcs.6499. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6499/

Cité par Sources :