The game colouring number of powers of forests
Discrete mathematics & theoretical computer science, Tome 18 (2015-2016) no. 1.

Voir la notice de l'article provenant de la source Episciences

We prove that the game colouring number of the $m$-th power of a forest of maximum degree $\Delta\ge3$ is bounded from above by \[\frac{(\Delta-1)^m-1}{\Delta-2}+2^m+1,\] which improves the best known bound by an asymptotic factor of 2.
@article{DMTCS_2015_18_1_a1,
     author = {Andres, Stephan Dominique and Hochst\"attler, Winfried},
     title = {The game colouring number of powers of forests},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2015-2016},
     doi = {10.46298/dmtcs.648},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.648/}
}
TY  - JOUR
AU  - Andres, Stephan Dominique
AU  - Hochstättler, Winfried
TI  - The game colouring number of powers of forests
JO  - Discrete mathematics & theoretical computer science
PY  - 2015-2016
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.648/
DO  - 10.46298/dmtcs.648
LA  - en
ID  - DMTCS_2015_18_1_a1
ER  - 
%0 Journal Article
%A Andres, Stephan Dominique
%A Hochstättler, Winfried
%T The game colouring number of powers of forests
%J Discrete mathematics & theoretical computer science
%D 2015-2016
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.648/
%R 10.46298/dmtcs.648
%G en
%F DMTCS_2015_18_1_a1
Andres, Stephan Dominique; Hochstättler, Winfried. The game colouring number of powers of forests. Discrete mathematics & theoretical computer science, Tome 18 (2015-2016) no. 1. doi : 10.46298/dmtcs.648. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.648/

Cité par Sources :