Wiener Index and Remoteness in Triangulations and Quadrangulations
Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 1.

Voir la notice de l'article provenant de la source Episciences

Let $G$ be a a connected graph. The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices. We provide asymptotic formulae for the maximum Wiener index of simple triangulations and quadrangulations with given connectivity, as the order increases, and make conjectures for the extremal triangulations and quadrangulations based on computational evidence. If $\overline{\sigma}(v)$ denotes the arithmetic mean of the distances from $v$ to all other vertices of $G$, then the remoteness of $G$ is defined as the largest value of $\overline{\sigma}(v)$ over all vertices $v$ of $G$. We give sharp upper bounds on the remoteness of simple triangulations and quadrangulations of given order and connectivity.
DOI : 10.46298/dmtcs.6473
Classification : 05C09, 05C12, 05C40
@article{DMTCS_2021_23_1_a4,
     author = {Czabarka, \'Eva and Dankelmann, Peter and Olsen, Trevor and Sz\'ekely, L\'aszl\'o A.},
     title = {Wiener {Index} and {Remoteness} in {Triangulations} and {Quadrangulations}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021-2022},
     doi = {10.46298/dmtcs.6473},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6473/}
}
TY  - JOUR
AU  - Czabarka, Éva
AU  - Dankelmann, Peter
AU  - Olsen, Trevor
AU  - Székely, László A.
TI  - Wiener Index and Remoteness in Triangulations and Quadrangulations
JO  - Discrete mathematics & theoretical computer science
PY  - 2021-2022
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6473/
DO  - 10.46298/dmtcs.6473
LA  - en
ID  - DMTCS_2021_23_1_a4
ER  - 
%0 Journal Article
%A Czabarka, Éva
%A Dankelmann, Peter
%A Olsen, Trevor
%A Székely, László A.
%T Wiener Index and Remoteness in Triangulations and Quadrangulations
%J Discrete mathematics & theoretical computer science
%D 2021-2022
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6473/
%R 10.46298/dmtcs.6473
%G en
%F DMTCS_2021_23_1_a4
Czabarka, Éva; Dankelmann, Peter; Olsen, Trevor; Székely, László A. Wiener Index and Remoteness in Triangulations and Quadrangulations. Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 1. doi : 10.46298/dmtcs.6473. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6473/

Cité par Sources :