Voir la notice de l'article provenant de la source Episciences
@article{DMTCS_2020_special_379_a101, author = {Cantini, Luigi and De Gier, Jan and Wheeler, Michael}, title = {Matrix product and sum rule for {Macdonald} polynomials}, journal = {Discrete mathematics & theoretical computer science}, publisher = {mathdoc}, volume = {DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)}, year = {2020}, doi = {10.46298/dmtcs.6419}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6419/} }
TY - JOUR AU - Cantini, Luigi AU - De Gier, Jan AU - Wheeler, Michael TI - Matrix product and sum rule for Macdonald polynomials JO - Discrete mathematics & theoretical computer science PY - 2020 VL - DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6419/ DO - 10.46298/dmtcs.6419 LA - en ID - DMTCS_2020_special_379_a101 ER -
%0 Journal Article %A Cantini, Luigi %A De Gier, Jan %A Wheeler, Michael %T Matrix product and sum rule for Macdonald polynomials %J Discrete mathematics & theoretical computer science %D 2020 %V DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6419/ %R 10.46298/dmtcs.6419 %G en %F DMTCS_2020_special_379_a101
Cantini, Luigi; De Gier, Jan; Wheeler, Michael. Matrix product and sum rule for Macdonald polynomials. Discrete mathematics & theoretical computer science, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2020). doi : 10.46298/dmtcs.6419. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6419/
Cité par Sources :